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Since 1985, fisheries management has undergone vast changes. Requests for new policies that 

evaluate impacts beyond individual removals of fish have outpaced the scientific tools available 

to implement them. Tools that were or became available were often implemented without 

rigorous testing. Here, simulations were used to assess the ability of two multivariate time-series 

models to provide information relevant to ecosystem-based fisheries management. Simulations 

highlighted the need to account for time-series properties of data. Multivariate autoregressive 

state-space models successfully estimated interactions between two time series when observation 

error was small and the length of the time series was sufficient. Prewhitening procedures were 

also successful in estimating interactions. The framework proved useful for estimating synchrony 

between indicators of ecosystem status and the true state of the ecosystem. Spatiotemporal 

multivariate models successfully recovered trends in the data. Models were robust to model 

misspecification and estimates of covariates related to linear relationships between habitat and 

relative abundance were unbiased. In contrast, squared terms were biased, particularly for the 

catch-rate component of the model. Incorrectly including a habitat covariate when it did not 
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govern the data-generating process was less problematic than not including the covariate when it 

should have been included. Results from simulations guided the selection of quantitative tools 

used to provide inference on management uncertainty related to gear switching in the US West 

Coast Groundfish LE trawl fishery. Fishers in this fishery were allowed to switch from using 

trawl-gear to fixed-gear to land sablefish in 2011, and it was expected that bycatch of species 

with restrictive quotas would influence their decision to switch. However, bycatch species were 

not a major factor in their decision. Instead, unmodeled factors related to the major port groups 

included in the analysis were the best predictor of the proportion of landings that were caught 

using fixed-gear compared to trawl-gear. It was hypothesized that social and logistical challenges 

specific to each port group could limit their ability or desire to switch gear. Additionally, vessels 

could be limited to using trawl-gear because ports may not have adequate facilities to process 

catch from fixed-gear. 
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INTRODUCTION  

Fisheries and aquaculture are important sources of food, nutrition, income, and livelihood for 

hundreds of millions of people across the globe. Harvests from the world’s fisheries have steadily 

increased since the end of the Second World War (FAO, 2018). However, landings from distant-

water fleets have declined since the late 1980s. In 1989, 26% of the world’s fish stocks were 

estimated to be fished at biologically unsustainable levels (FAO, 2016). This overexploitation 

threatens biodiversity (Boehlert, 1996; Parsons, 1991) and the ability of the fishing industry to 

contribute to human nutrition, food security, and economic growth (Béné et al., 2016). Concerns 

about overexploitation, overcapacity, and illegal unregulated and unreported fishing led to calls 

for fundamental changes in fisheries management. These concerns are still of interest today with 

31.4% of the world’s fish stocks estimated to be overfished as of 2013. 

Declines in the landings of wild-caught fisheries, paralleled with increasing concerns about 

the sustainability of fisheries, led to an emphasis on fisheries management in national policies and 

legislation (e.g., UN, 1992). By this time, fisheries management was already far more holistic than 

it was at the turn of the 20th century when the potential for the depletion of fish populations was 

debated (Huxley, 1883). The 1990s legislation renewed the impetus for the precautionary approach 

to management and the need for the participation of all concerned citizens. The precautionary 

approach emphasizes the need to err on the side of caution. Specifically, when information is 

sparse or uncertain this uncertainty should help inform decision making and lead to more stringent 

management (UN, 1992). This call for the precautionary approach was followed by the collapse 

of the Canadian Atlantic northern cod fishery despite it being managed under a framework that set 

harvest levels at those predicted to be sustainable (Myers et al., 1997). The collapse and subsequent 

slow recovery of the cod fishery highlighted the need to translate international policies focused on 

the precautionary approach to the national and local level.  

These international policies included broad objectives such as to protect rare or fragile 

ecosystems and to protect and maintain relationships and dependencies among species (WCED, 

1987; UN, 1992). Fisheries managers were subsequently tasked with explaining the consequences 

of management actions with respect to these broad objectives. Consequences, in terms of the 

perceived risk of failing to meet an objective, were best described using trade-offs because all 

fishing activities have at least some environmental impact. The precautionary approach applied to 

single-species fisheries management focused on maintaining the production of target species. A 
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logical extension of this has been the development of ecosystem-based fishery management 

(EBFM), which expands beyond targeted single species to recognize risks to non-target species 

(e.g., Walters et al., 2005) and the greater social-ecological system in which the species reside 

(Ostrom, 2009). 

Ecosystem-based fishery management was thus coined as a holistic approach to maintaining 

ecosystem integrity and the benefits derived from such ecosystems (Larkin, 1996). The US 

National Oceanic and Atmospheric Administration and the Food and Agriculture Organization 

define EBFM as  

“an approach that takes major ecosystem components and services (both structural and functional) into 
account in managing fisheries. It values habitat, embraces a multispecies perspective, and is committed to 
understanding ecosystem processes. Its goal is to rebuild and sustain populations, species, biological 
communities, and marine ecosystems at high levels of productivity and biological diversity so as not to 
jeopardize a wide range of goods and services from marine ecosystems while providing food, revenue, and 
recreation for humans” (NRC, 1998). 

The same problems that faced traditional fisheries management (i.e., overfishing, 

overcapacity, and illegal unregulated and unreported fishing) are also problems in EBFM. 

Nevertheless, EBFM proposes to mitigate these problems in a more holistic manner. Consideration 

of the broader ecosystem is seen as one potential solution to sustainable fisheries (Pikitch et al., 

2004).  

Operationally, EBFM starts with the priorities of the ecosystem rather than target species. For 

example, total allowable catches (TACs) in the Bering Sea and Aleutian Islands groundfish fishery 

are first capped at 2 million mt (well below the sum of the individual TACs) and individual TACs 

estimated from single-species stock assessment models are subtracted from this cap (NPFMC, 

2017). Some TACs may be set at values lower than what was estimated as corresponding to fishing 

at the maximum sustainable yield (or its proxy) to ensure the sum of all catches is below the cap. 

It can be argued that using a multispecies stock assessment model to simultaneously estimate 

TACs would be a better way forward rather than summing TACs based on single-species stock 

assessments (Burgess et al., 2017). However, multispecies stock assessment models are still works 

in progress and have their own set of associated biases (Punt and Hilborn, 1994; Hollowed et al., 

2000; Plagányi et al., 2012). Off the US West Coast, marine protected areas with allowances for 

some catches were implemented by the Pacific Fisheries Management Council (PFMC) to limit 

bycatch of overfished species and to conserve essential fish habitat (66 FR 2338). These protected 

areas were seen as a way to keep the groundfish fishery open. Albeit at the potential expense of 
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not being able to fully achieve TACs of stocks that were not overfished, highlighting Gunderson 

and Holling’s (2002) take that single-species approaches are not wrong, just incomplete.  

Some goals of EBFM are easily defined, present few controversial trade-offs, and are 

achievable without the use of complex models. For example, reducing the bycatch of non-target 

species can sometimes be realized through the adoption of a relatively simple gear modification 

(e.g., Cooke et al., 2012). Goals can also be complex, controversial, fraught with trade-offs, and 

may threaten the ability of marine ecosystems to provide goods and services if left unaddressed. 

For example, forage fish support marine predators and contribute billions of dollars to the global 

economy as catches (Pikitch et al., 2014). Addressing complex goals in the best-case scenario may 

mean the use of highly parameterized models but available data are not always sufficient to do so. 

Nevertheless, the lack of “full scientific certainty shall not be used as a reason for postponing cost-

effective measures to prevent environmental degradation” (principle 15 of UN, 1992).  

Indicators of ecosystem status offer a means to evaluate changes in the ecosystem when there 

is insufficient knowledge or data to directly calculate ecosystem properties of interest (i.e., 

attributes). Changes in indicators can be compared to changes in fisheries management as a way 

to assess the implications of the current regime. Indicators such as maximum size-at-age can track 

changes in age- and size-composition and provide a useful way to assess how ecosystems respond 

to fishing pressure (Probst et al., 2013; Rice, 2000). Catches and the mean trophic level (TL) of 

the catch provide information on potential changes in predator-prey relationships (Christensen, 

1996). Thus, time-series data on species that reside within an ecosystem can be informative about 

the effects of fishing and the status of biodiversity and ecosystem function without needing to 

conduct a stock assessment for each species (Greenstreet et al., 2012; Shannon et al., 2009). 

Furthermore, indicators that result from single-species stock assessments may not be informative 

about unwanted consequences to the ecosystem.  

The number of potential indicators for EBFM seems to be ever-growing. Rice and Rochet 

(2005) outline a framework for choosing indicators. Reliable ecological indicators must possess a 

number of desirable properties, some of which are not mutually exclusive and lead to trade-offs 

(Rice and Rochet, 2005). For example, ecological indicators should minimize false positives (i.e., 

incorrectly identifying that an ecosystem has crossed the reference point) and false negatives (i.e., 

failing to identify that an ecosystem has crossed the reference point). Additionally, indicators 

should be robust across time and space (Noss, 1990) and drivers of change (Link et al., 2010).  
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Survey data are informative about community-level indicators (Jennings and Dulvy, 2005), 

such as size classes, size spectra, average size, species richness, and species evenness. These 

indicators are often noted as being increasingly robust compared to ecological indicators that 

aggregate coarsely over many taxa (e.g., total biomass; Methratta and Link, 2006) or single-species 

traits (Cottingham and Carpenter, 1998; Fulton et al., 2005). For instance, zooplankton biomass is 

known to exhibit little changes in biomass with increased ocean acidification (Schindler et al., 

1985). Unfortunately, some community-level indicators can only be applied when species-specific 

composition data are available. Globally, age- or size-composition data are less likely to be 

collected than biomass or presence/absence data, thus limiting their use when looking beyond the 

first order effects of fishing (Jouffre et al., 2010). 

Efficient indicators should be robust to issues of scale, temporal and spatial, and ecosystem 

characteristics. Minimally, it should be known which factors cause an indicator to deviate from 

the attribute it is hypothesized to track. Unfortunately, the majority of research on indicators relates 

to reporting empirical trends (e.g., Coll et al., 2016) and methods for determining reference points 

(e.g., Trenkel and Rochet, 2003) rather than indicator robustness (for exceptions see Fulton et al., 

2010; Shin et al., 2010a). Fulton et al. (2005) paved the way for evaluating indicator robustness 

using a simulation-based approach. Correlations between indicators and attributes were used to 

assess indicator robustness across a range of fishing patterns and nutrient loads in two simulated 

ecosystems. Evaluating trade-offs without having to measure empirical data offers an efficient 

means to eliminate proposed indicators that are unlikely to be robust because it is unlikely that an 

indicator will perform well when applied to real data if it does not perform well in a simulated and 

simplified ecosystem. Furthermore, simulations offer a way to test indicator robustness under 

several management regimes (Samhouri et al., 2009) or levels of observation error, currently a less 

studied topic with respect to indicator robustness. 

Data on indicators are typically time series or spatial replicates. However, their treatment as 

such is limited. For example, Fulton et al. (2005) ignored the time-series properties of the data on 

indicators and attributes and used correlation to assess relationships. Multivariate autoregressive 

state-space (MARSS) models offer one way to detect spatially- and temporally-explicit patterns of 

synchrony (Hinrichsen and Holmes, 2009). Their use in ecology began with time-series data for 

single populations (Dennis et al., 2006; Millar and Meyer, 2000; Staples et al., 2004) and later 

extended into two-dimensional space for movement data (Jonsen et al., 2003) and multiple 
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subpopulations (Ward et al., 2010) and species (Mattsson et al., 2013). The models inherently 

account for autocorrelation and can estimate both process and observation error in a single 

framework. Their simpler counterparts, multivariate autoregressive (MAR) models, have been 

used to estimate patterns of temporal correlation in abundances from species interactions (Ives, 

1995; Ives et al., 1999, 2003). Their utility in measuring interaction strengths between two time 

series was compared to correlation coefficients using simulation in Chapter 1.  

Models that define simulation analyses can be as simple as a two linear equations like those 

used in Chapter 1. Conversely, they can be extremely complex. The end-to-end ecosystem model 

known as Atlantis can include human dynamics in addition to the marine ecosystem (e.g., van 

Putten et al., 2013). Chapter 2 built upon the results of Fulton et al. (2005) using methods explored 

in Chapter 1 to provide inference on the robustness of indicators. Robustness was measured across 

ecosystems and drivers of change.  

Simulated output used as data in Chapter 2 included information on relative abundance from 

fisheries-independent and -dependent sources. Both sources of data provide information in the 

form of catch rates that by themselves are seldom proportional to abundance and need to be 

standardized (Maunder and Punt, 2004). Standardization can account for factors such as 

differences among vessels in fishing power (Helser et al., 2004; Robins et al., 1998), the depth or 

location at which fish are caught (Bigelow and Maunder, 2007; Cao et al., 2017), and sampling 

intensity (Cochran, 1977). The resulting standardized index of abundance can be used directly by 

management as an indicator or as input when fitting a stock assessment model. Recently, the use 

of spatiotemporal models for index standardization has increased because of their ability to account 

for spatial heterogeneity and improve precision relative to design-based estimators (Thorson et al., 

2015c). In theory, the inclusion of habitat covariates (e.g., depth) should also improve precision. 

Chapter 3 used simulation to assess the utility of including habitat covariates in a spatiotemporal 

index-standardization model that is currently used to provide relative indices of abundance for 

many US West Coast groundfish species managed by the PFMC. Determining if habitat covariates 

are informative could become increasingly relevant as species ranges are predicted to shift with 

respect to depth and latitude as oceans warm in response to climate change (Dulvy et al., 2008; 

Nye et al., 2009; Perry et al., 2005).  

Simulations can also be used in a dynamic sense to test the effectiveness of management 

strategies in meeting objectives (Punt et al., 2016). A closed-loop simulation that includes each 
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step going forward in time can be used to identify management strategies that are more likely to 

lead to the achievement of objectives. The simulations decompose management strategies into 

three parts, the data used to inform ecosystem status, the analysis to determine the current status, 

and to implement actions based on current status. A key source of uncertainty in these closed-loop 

simulations is that of the management actions themselves, also known as management uncertainty. 

Management uncertainty is a pervasive problem in fisheries management, entering at multiple 

stages of the management cycle, working to undermine effective policies. 

There are many examples where the outcomes of management actions are different than those 

that were hypothesized. For example, entry and exit behavior should be predictable given 

economic theory. In Iceland, fishers often fail to exit a fishery when it is economically rational to 

do so because of fear of low catches in a new fishery, where low catches are considered humiliating 

(Pálsson and Durrenberger, 1982). Choices of fishers can be guided by information on 

environmental factors, risk tolerance, personal experience, economic expectations, management 

constraints, etc. (Steelman and Wallace, 2001; van Putten et al., 2012). Furthermore, choices are 

typically made in relation to multiple objectives, involve factors with varying levels of uncertainty, 

and may depend on the actions of other fishers (Allen and McGlade, 1987). Therefore, fisher 

behavior will be driven by much more than just economic objectives (e.g., profit maximization), 

and policies that fail to account for complexities arising from socioeconomic and cultural contexts 

may fail to reach objectives (Branch et al., 2005; Mahon et al., 2008).  

Decades of research exists on the human dimensions of fisheries. Much of this research 

assumes fishers’ reactions to management are driven by economic effects alone, and the 

knowledge gained from this research is almost never explicitly included in scientific advice to 

managers (Fulton et al., 2010). Removing all sources of management uncertainty will never be 

possible. Nevertheless, quantitative methods that determine the drivers of fisher behavior, beyond 

economics, are needed. Chapter 4 used empirical data collected from the US West Coast Limited 

Entry Trawl Fishery to determine drivers of gear choice when landing sablefish (Anoplopoma 

fimbria). Results will be useful for parameterizing future closed-loop simulations to assess the 

effectiveness of EBFM strategies implemented by the Pacific Fisheries Management Council.  

This dissertation highlights the growing recognition that EBFM relies on quantitative tools to 

provide strategic and tactical advice, involves multiple disciplines, and does not need to wait for 

the collection of more data. Assessment of whether a fishery is sustainable has evolved over the 
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last two decades, with an increasing focus on accounting for the ecological impacts of fishing. 

Unfortunately, science to inform assessments lags mandates. The main objective of this research 

is to increase the number of quantitative methods available to fisheries scientists engaged in 

EBFM. The work proposed here will facilitate inclusion of impacts beyond the direct removal of 

fish when assessing the sustainability of fisheries. Quantitative tools, such as those proposed here, 

facilitate the evaluation of trade-offs by providing reproducible results, being applicable to 

historical data, and providing measures of uncertainty.  
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Chapter 1. JUST SAY NO TO CORRELATION FOR TIME-

SERIES DATA AND INSTEAD USE 

METHODS THAT ACCOUNT FOR 

AUTOCORRELATION 

Abstract 

Detecting ecological interactions (e.g., density-dependence) is an increasingly important task of 

ecologists aiming to increase their general understanding of intra- and interspecific interactions 

and how they are affected by the abiotic environment. Three methods (cross correlation, 

prewhitened cross correlation, and multivariate autoregressive state-space models) were fit to 

simulated data to assess which method best identified “true” interactions between time series. 

Simulated data included cases where the time series were positively or negatively correlated with 

themselves and with each other. Multivariate autoregressive state-space models offered an 

unbiased integrated approach to estimate interactions and observation error when the data were 

informative. Prewhitened cross correlation was more robust to time-series length, observation 

error, and interaction strength than multivariate autoregressive state-space models when the data 

were less informative. Prewhitened cross correlation provided unbiased estimates of interactions 

that corresponded to correlations in process errors. Correlations in the process errors can be 

thought of as interactions due to factors not included in the model. Consequently, the choice of an 

appropriate model depends on the interaction of interest and the information contained in the data. 

Simple correlation should not be used when the time series are thought to be autocorrelated. 

1.1 INTRODUCTION 

Understanding interactions between organisms and their environment and among groupings 

of organisms is important to ecologists and critical to the management of natural resources (Allen 

and Hoekstra 2015). Classic examples include interactions between lynx (Lynx canadensis) and 

snowshoe hare (Lepus americanus) in boreal forests of North America (Figure 1.1; Elton and 

Nicholson, 1942), the number of young individuals entering a population and mature biomass (e.g., 

Hjort, 1914), and the number of young individuals entering a population and environmental 

conditions (Szuwalski et al., 2015). Correlation coefficients, which measure the extent to which 
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two variables fluctuate together, offer a means to quantify such interactions (Galton 1888). 

However, most ecological data are autocorrelated (e.g., Beamish, 1995; Hollowed et al., 2001) 

and thus lack the statistical independence needed to infer the significance of correlations (Yule, 

1926). 

The usefulness of techniques proposed to reduce the probability of statistical errors when 

calculating correlation coefficients in the presence of autocorrelation depend on the sign and 

magnitude of the autocorrelation (Pyper and Peterman, 1998). First differencing has long been 

known to reduce the presence of Type-1 errors in econometrics (Granger and Newbold, 1974). 

However, first differencing can increase the probability of Type-2 errors when the driving force 

of the interaction is strongly autocorrelated (Pyper and Peterman, 1998). First differencing can 

also lead to the estimation of negative interactions when there are none (Buonaccorsi et al., 2001). 

Time series models such as a first-order autoregressive models, AR(1), can be used to “prewhiten” 

the time series (Box et al., 2015). The usefulness of prewhitening may depend on how well the 

prewhitening framework matches the true underlying process. The degrees of freedom or the 

variance of the correlation coefficient can be corrected using an estimate of the autocorrelation 

(Bartlett, 1946; Bayley and Hammersley, 1946). Unfortunately, autocorrelation is notoriously 

difficult to estimate when the time series includes fewer than 20 measurements (Thompson and 

Page, 1989) or the autocorrelation is weak (Ryding et al., 2007).  

Biased standard errors can also result when the time series are intercorrelated in multiple 

ways. Multicollinearity can lead to unstable correlation coefficients that are difficult to interpret. 

In ecology, multicollinearity has a history of being ignored (Graham, 2003) even though ecological 

responses are often the result of more than one interaction (Borcard et al., 1992). For example, 

lynx visually appear to be correlated with hare at a negative lag (panel a in Figure 1.1) and lynx 

and hare appear to be correlated with themselves (panel b in Figure 1.1). The lag -1 correlation 

(solid line in panel c of Figure 1.1) was statistically significant after accounting for autocorrelation 

(i.e., prewhitening). Unfortunately, cross-correlation coefficients are estimated independently and 

thus the effect of other lags are not taken into account. Mutually experienced factors such as 

weather may be affecting the time series simultaneously, and prey availability could be 

contributing to lagged effects.  

Many methods are available for estimating interactions besides correlation, but the benefits 

of their additional complexity are not always clear in an ecological context. Monte Carlo 



www.manaraa.com

 

 

10

simulations were used to quantify and compare the ability of cross correlation, prewhitened cross 

correlation, and multivariate autoregressive state-space models (MARSS: Holmes et al., 2012) to 

estimate relationships between two time series affected by potentially more than one type of 

interaction. Simulations, for which the truth is known, allowed for differences among the results 

from each estimation method to be interpreted in terms of how time-series length, autocorrelation, 

direct interactions, mutual or co-interactions, and observation error affected each investigated 

method. Previous work has investigated some of these given a single estimation framework (e.g., 

Pyper and Peterman (1998) estimated cross correlations across a range of co-interactions), but the 

results presented here represent the first effort to compare the performance of the three estimation 

methods across a wide range of interaction types. Results provide clear examples of the dangers 

of not prewhitening and guidance regarding when using prewhitening or MARSS models is 

advantageous. The principal focus of this manuscript is on assessing interactions in the presence 

of temporal autocorrelation, but the same statistical issues apply to spatial autocorrelation (Moran, 

1950). 

1.2 METHODS 

There are many types of ecological interactions, but for ease of understanding we limit their 

classification to just three types. The first, which we call direct-interactions, occur when time series 

change in a scaled, predictable way because the value of one time-series directly depends on the 

other. Changes in the independent time series could in theory be used to predict the dependent time 

series in direct-interactions. The second, co-interactions, occur when time series rise and fall 

together without a direct causative link. Lastly, time series can exhibit relationships with 

themselves, self-interactions, such as would be expected for time series of population size. 

Autocorrelation is typical of large-bodied species that experience less variability than smaller-

bodied species (Pimm, 1991). Hypothetical data were simulated for combinations of interaction 

types and cross correlation, prewhitened cross correlation, and MARSS models were fit to 

simulated data to determine the circumstances in which each estimation methods adequately 

characterized the true dynamics.  

1.2.1 Data generation 
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1.2.2 Data generation 

Simulated data included two time series (  and ) that potentially interacted through time 

( ), 

 , 0

, ,
	   (1.1).  

Direct-interactions ( , ) were limited to one-way interactions with a lag of negative one and a 

strength ranging from -0.9 to 0.9. Self-interaction strengths were equal ( , = , ) and ranged from 

-0.9 to 0.9. Co-interactions ( ) were implemented using multivariate normal process error (  

with a mean of zero and covariance matrix . The variance of the process errors ( , ,  were 

equal and set to 1.0 (Ives et al., 2003). The off-diagonal of  ranged from -0.9 to 0.9 and was 

back-calculated from the correlation in 	 , , ,⁄ . The model can be thought of 

as a multivariate Gompertz model if the time series are log-transformed abundances, where per-

capita growth is a log-linear function of abundance (Ives et al., 2003). Process error variance was 

fixed at 1.0 to ensure that there was sufficient information in the errors for estimation purposes, 

matching that used in Ives et al. (2003). Normally distributed observation error with a variance of 

1.0 was added to some simulations to increase the applicability of the results to ecologists because 

ecological processes are typically measured imperfectly (Figure A.1). Data were simulated for 100 

time steps, which may be unrealistic for some disciplines but it is not unheard of. For example, 

annual flow for the Main River at Wuerzburg, Germany started in 1823.  Additional data sets were 

simulated with stronger interactions ( ,  of 1.35 and 1.8) and two observations for each time series 

per time step instead of just one. Increasing the number of observations led to two realizations of 

 that differed from each other because of added i.i.d. observation error and two realizations of 

 that also differed from each other because of observation error to emulate collecting data at 

two stations or by two observers simultaneously. Shorter data sets were created by truncating the 

full 100 time steps to the first 25 time steps. 

1.2.3 Estimation methods 

Buonaccorsi et al. (2001) highlighted the difficulty in estimating interactions between time 

series and concluded that prewhitened correlation (Shumway and Stoffer, 2011) leads to better 

characterization of interactions than correlation in the presence of autocorrelation. Multivariate 
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autoregressive models have also been suggested as a method to estimate interactions (Ives et al., 

2003). The two methods have yet to formally compared. Here, we investigated both methods as 

well as standard cross correlation using Pearson’s correlation coefficients and multivariate 

autoregressive state-space (MARSS) models (Holmes et al., 2012). See Appendix A for more 

details. 

Cross correlation is a widely used statistic to investigate relationships between lagged time 

series. The statistic provides a measure of linear intensity bound between ±1, measuring the 

proportion of variation explained. We hypothesized that lag-zero and -negative one coefficients 

would reflect scaled versions of the true  and b2,1 used to simulate the data because the data were 

generated using stationary process errors and one-way direct-interactions at a lag of negative one. 

Lags of ±2 were investigated to explore the repercussions of estimating lags beyond those used to 

generate the data (Olden and Neff, 2001). 

Prewhitened cross correlation was included to investigate the benefits of attempting to remove 

autocorrelation prior to calculating correlation coefficients. Time series were “prewhitened” by 

finding the best-fitting autoregressive integrated moving average (ARIMA) model for the leading 

time series and applying that same model to the lagging time series. Prewhitened cross correlation 

coefficients were then calculated on the residuals in the hope that the leading time-series residuals 

were a white noise process. ARIMA models were used instead of AR(1) models because the true 

generating process would not be known outside of a simulation context, and thus, the process better 

replicated what could be done using empirical data. Estimated autoregressive, moving average, 

and differencing parameters are summarized in Table A.2.  

Lastly, two configurations of MARSS models (Table A.1) were investigated. The first 

configuration ignored observation error (hereafter referred to as MAR models) and the second 

configuration estimated i.i.d. observation error (e.g., Ward et al., 2010). The process component 

of the MARSS model specifies the unobserved state and was similar to Equation 1.1. The 

estimation method freely estimated all four parameters relating the leading and lagging time series 

in the interaction matrix, , and an additional parameter vector, u, was added to describe the mean. 

Thus, 	 . The observation component, 	 , allowed for the 

estimation of multivariate normal observation error, ~ 0, . Multiple observations of the 

state process were accommodated using , which is a model matrix of zeros and ones specifying 

how each element in the vector of observations at . 	correspond to the unobserved states. 
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Ignoring observation error involved fixing all elements of  to zero.  was specified diagonal 

matrix with one parameter when observation error was estimated (e.g., Ives and Dakos, 2012). 

Models were fit using the MARSS package (Holmes et al., 2012) in the R statistical language (R 

Core Team, 2018).  

1.2.4 Estimation method performance 

Cross correlation, prewhitened cross correlation, and MARSS models were evaluated for their 

ability to estimate interactions using median estimates across 100 simulations and visual inspection 

of their variability. Large sample sizes can lead to significant results for weak relationships (White 

et al., 2014), so significance was not reported. Results of the MARSS models are only reported for 

those that converged. Converged models were those that successfully estimated standard errors of 

parameters (Table A.3).  

The data-generating process was the most similar to MARSS models. Comparisons of bias 

(estimated-true) were made between parameters of the data-generating process and all investigated 

models to emphasize the ability, or lack thereof, of each model to estimate each type of interaction. 

The off-diagonal elements of  can range beyond ±1 and are not directly comparable to correlation 

coefficients, which are bound between ±1. The scaling issue can be further complicated when data 

are standardized to have a mean of zero and a standard deviation of one. Ecological data are 

typically standardized in this manner (Schielzeth, 2010) and thus results are also included for 

models fit to standardized time series.  

1.3 RESULTS 

As expected, prewhitened cross correlation and MARSS models were on average better able 

to estimate interactions than cross correlation when the time series were autocorrelated (bottom 

row in Figures 1.2-1.4). Prewhitening sometimes decreased the magnitude of the direct-interaction 

leading to increased bias relative to correlation in a few instances. Prewhitened results were almost 

always more precise than correlation. Interpreting cross correlation coefficients was not 

straightforward (Figures A.2-A.4). The coefficients reflected combinations of the true interactions 

used to simulate the data. For example, when the direct-interaction was large the lag negative one 

correlation decreased with decreasing self-interaction strength (Figure A.2).  
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Estimates from models fit to data sets that were simulated without observation error provided 

inference regarding model performance for a best-case scenario. Bias was only measurable with 

respect to MAR (i.e.,  fixed at zero) and MARSS models because their less complicated forms 

matched the model used to generate the data. The bias was negligible for this best-case scenario 

(Figure 1.2). Prewhitened cross correlation detected the presence of non-zero direct-interactions at 

a lag of negative one (Figure 1.2). The signal of the direct interactions was not present at other 

investigated lags (results not shown). Lag negative one correlation coefficients were more precise 

but less accurate than MAR models in estimating the strength of the direct-interaction when the 

self-interactions were zero (Figures 1.2 and A.5). Lag-zero correlation coefficients from 

prewhitened time series were more precise than those from data that were not prewhitened. 

Prewhitening reduced the amount of information present in the data about co-interactions as more 

types of interactions were present in the data-generating process (Figures 1.3 and A.6). Estimates 

of the co-interactions from MARSS models were unbiased for this best-case scenario. It was not 

surprising that MAR models better characterized the self-interactions than the unconstrained 

prewhitening procedure because they were limited to an AR(1) process (Figures 1.4 and A.7; Table 

A.1). 

The presence of observation error led to increased bias and variance for co-interactions 

compared to when prewhitened cross correlation and MAR models were fit to data without 

observation error (Figure 1.5 versus Figure 1.3). Variance also increased when the length of the 

time series decreased. Many MARSS models did not converge (Table A.2) and those that did 

converge struggled to discern interactions unless all three types were present at extreme values 

(light gray in right panel in Figure 1.5) or multiple observations were available per state (i.e., a 

non-identity Z matrix; Figures A.8-A.9).  

Observation error also induced bias in the characterization of direct-interactions (Figure 

A.10). As mentioned above, prewhitened cross correlation could not be assessed for bias in the 

same way as the output from MARSS models. In general, estimates of the direct-interaction from 

MARSS models increased and decreased relative to the true value more consistently than estimates 

from prewhitened cross correlation. However, estimates from MARSS models shrank towards zero 

when the data were standardized. Prewhitened cross correlation estimates were typically similar 

regardless of standardization (Figure A.11). 
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1.4 DISCUSSION 

Ecological time series rarely consist of independent identically distributed random variables 

(e.g., Pyper and Peterman 1998, Hollowed et al., 2001). Yet, ecological time series are commonly 

treated as though they were. Results presented here corroborate previous research demonstrating 

that autocorrelation can lead to biased estimates (e.g., Yule 1926, Katz 1988) and that prewhitening 

reduces this bias (Buonaccorsi et al., 2001). More novel was the finding that MARSS models only 

outperformed prewhitened cross correlation when observation error was low and the state variables 

strongly interact. This result is surprising because the prewhitening procedure was not constrained 

to match the data-generating process. In contrast, MARSS models were constrained to an AR(1) 

process. Unfortunately, correlations cannot be used for forecasting, a popular practice in ecology, 

whereas well-informed MAR and MARSS models provide an ideal platform for forecasting time-

series.  

Ecologists are typically interested in direct-interactions and less interested in co-interactions. 

However, the latter can have important consequences such as increasing extinction risk (Petchey 

et al., 1997; Heino, 1998). Additionally, the combination of co-interactions with direct- or self-

interactions can lead to large and nonintuitive changes over time (Ripa and Ives, 2003). For 

example, time series that exhibit positive self-interactions are equally likely to be positively or 

negatively correlated if they react similarly to their environments (Figure A.1). Therefore, a priori 

knowledge of the biological mechanism causing the direct-interaction is not enough. Ecologists 

should also be aware of the potential for interactions driven by environmental conditions (Ripa 

and Ives, 2003), which are often what is being measured.  

Informative time series led to very little bias in MARSS results. Ecological time series are 

typically less informative than what would be considered ideal. Consequently, results from 

MARSS models were often imprecise because many parameter combinations could explain the 

patterns in data. When too many parameter combinations fit the data the MARSS models failed to 

converge. Even MAR models failed to estimate standard errors when fit to some of the simulated 

data sets. The amount of information in the data decreased when the diagonal of the  matrix was 

small (results not shown), observation errors were present, and the length of the time series was 

less than ideal. Convergence is a known issue for many time-series methods because time series 

are often short and subject to observation error (Ward et al., 2017). Convergence improved when 



www.manaraa.com

 

 

16

MARSS models were fit to multiple observations of the same process (See and Holmes, 2015). It 

is unclear how to best accommodate known dependence structures such as sampling location using 

correlation. In contrast, MARSS models can be informed about dependence structures and may 

even be able to accommodate correlation structures that are likely to arise from spatial processes 

(Moran, 1950).  

Prewhitening can be performed using several methods such as first differencing; smoothing; 

first-order autoregressive models fit using ordinary least squares, generalized least squares, 

maximum likelihood, or restricted maximum likelihood; or ARIMA models. Here, ARIMA 

models that differed in their degree of differencing, autoregressive structure, and moving-average 

parameters were fit to the leading time series and the best model was chosen via Akaike 

information criteria corrected for small sample sizes. This procedure was chosen to mimic an 

empirical analysis where the true structure is unknown and does not necessarily follow the standard 

AR(1) autoregressive model (see Appendix A for more details). Patterns in bias resulted when the 

ARIMA models failed to discern self-interactions from combinations of interactions, similar to 

estimates of correlation. These patterns may have been less prominent had the prewhitening 

procedure been more specific and matched the data-generating procedure. Additionally, some 

prewhitening procedures can accommodate state-space formulations to estimate observation error. 

However, canned software to do so is not as widely available or documented as thoroughly as 

MARSS models. Nevertheless, estimating observation error within the prewhitening procedure 

may decrease the likelihood of over smoothing. Over smoothing can lead to positively biased 

estimates of interactions at non-zero lags because it induces correlation in the data (Katz, 1988). 

In general, ARIMA models fit to the longer time series better estimated the AR(1) parameter than 

when they were fit to the shorter time series, corroborating previous research suggesting at least 

50 data points are necessary for cross correlation (Box and Jenkins, 1976).  

Choosing an appropriate model to account for autocorrelation is challenging, especially when 

data are influenced by several processes. Results indicate that MARSS models offer an integrated 

method for estimating multiple types of interactions should the data be informative. Cross 

correlation proved to be adequate for detecting relative differences in direct- and co-interactions. 

Future work on increasing the stability of MARSS models could increase their applicability within 

ecology where time series are short and fraught with observation error. Non-Gaussian distributions 
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and Bayesian methods could be a promising line of research to better estimate synchrony within 

environmental time series.  
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1.5 FIGURES 

 

Figure 1.1. Lynx (Lynx canadensis) and snoeshoe hare (Lepus americanus) from 1900 to 1920. 

Panel (a) depicts counts (thousands) of hare (solid line) and lynx (dashed line) from 1900 to 1920. 

Both time series exhibit lag-1 autocorrelation (~0.7; panel b). Cross correlation was only 

significant at a lag of -1 after an AR(1) model was fit to the hare data to prewhiten the time series 

(solid vertical lines in panel c). Cross correlation of the raw time series (points in panel c) were 

largely not signficant at the 0.05 level. The dashed blue horizontal lines in (b) and (c) are the values 

beyond which autocorrelations are significantly different from zero.   
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Figure 1.2. Violin plots of estimated direct-interactions from cross correlation (dark gray), 

prewhitened cross correlation (gray), and multivariate autoregressive state-space (MARSS) 

models (light gray) that did not estimate observation error (referred to as MAR models; light gray). 

Self-interactions are present in the simulated data in the bottom row. Direct-interactions are present 

in the right column. Co-interactions are present in the right side of each panel. Fitted time series 

included 100 points observed with error. Horizontal dashed, red lines indicate the true direct-

interaction used to simulate the data. Results from MAR models are limited to those that 

successfully estimated standard errors for all included parameters. 
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Figure 1.3. Same as Figure 1.2, except the y-axis displays estimates of co-interactions.
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Figure 1.4. Same as Figure 1.2, except y-axis displays estimates of AR(1) from the 

prewhitening procedure (gray) and from MAR models for the leading (light gray) and lagging 

(light gray with black border) time series. 
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Figure 1.5. Violin plots of estimated co-interactions from prewhitened cross correlation, 

multivariate autoregressive models (MAR), and multivariate autoregressive state-space (MARSS) 

models fit to 25 and 100 years of data (black and gray, respectively) across two levels co-

interactions (x-axis; horizontal dashed, red line). Time series were simulted with a direct-

interaction of 0.9, autocorrelation of 0.9, and observation-error variance of 1.0. Only MARSS 

models estimated observation error. The prewhitening model was the model that best fit the leading 

time series as chosen by Akaike information criterion corrected for small sample size. Results from 

MAR models are limited to those that successfully estimated standard errors for all included 

parameters. 
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Chapter 2. TESTING IF INDICATORS OF MARINE 

ECOSYSTEMS PREDICT ECOSYSTEM 

ATTRIBUTES USING ECOSYSTEM 

MODELS FROM ACROSS THE GLOBE 

Abstract 

Ecosystem-based management in the ideal case is informed by knowledge of the state of the system 

relative to management targets and how the ecosystem may change with new regulations. 

Unfortunately, we cannot precisely measure many ecosystem properties (“attributes”) and must 

rely on indicators or proxies of attributes to infer ecosystem status. Traditionally, correlation has 

been used to quantify how well indicators track attributes although this violates assumptions of 

correlation analyses because the data are typically autocorrelated. We used a simulation 

experiment to quantify indicator-attribute relationships using time-series models (i.e., multivariate 

autoregressive models) fitted to simulated output from eight ecosystem models. Biomass and mean 

trophic level from survey data best tracked ecosystem attributes. However, indicator performance 

varied across ecosystems. Indicators tracked attributes that were calculated in the same year more 

than attributes from the previous year. Accounting for the time-series dependencies inherent in the 

data was necessary to avoid bias. This work provides a framework for testing indicator-attribute 

relationships, which we recommend prior to using indicators in a management context. 

2.1 INTRODUCTION 

Ecosystem-based management (EBM) requires balancing multiple objectives while managing 

ecosystems subject to cumulative and potentially synergistic impacts from drivers of change (Crain 

et al., 2008; Darling and Côté, 2008; Coll et al., 2016). Potential drivers of change include those 

arising from the physical/chemical environment, anthropogenic activities, and ecological structure 

and function (e.g., predation). All of these drivers affect the ability to meet EBM goals, and 

Botsford et al. (1997) suggest that the historical lack of EBM is a major cause of unsustainable 

marine fisheries in many nations. Consequently, fishery managers, once charged with primarily 

setting catch limits, have now been tasked with addressing several objectives such as conserving 
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habitat, protecting endangered species, and maximizing catch while the oceans are experiencing 

increased use (Link, 2010).  

Progress towards implementing EBM involves the following steps: development of 

ecosystem goals (Kerschner et al., 2001), assessment of ecosystem status, and selection of 

decisions on how to best reach goals given the ecosystem status (Lackey, 1998; Levin et al., 2018). 

Advancement towards reaching ecosystem goals can be measured using ecosystem attributes. For 

example, measurements of biodiversity (e.g., Noss, 1990; Heino, 2010) can provide information 

on how well ecosystem resilience is being maintained. Changes in attributes, if measurable (or 

within a simulation), provide relevant information on ecosystem structure and function and 

quantitative measures of ecological responses to drivers of change. Attributes are often challenging 

to measure directly and require the use of proxies (i.e., indicators). Indicators provide a means to 

reduce the complexity associated with observing systems into a small set of potentially useful, 

measurable characteristics (e.g., Fulton et al., 2005; Methratta and Link, 2006; Shin et al., 2010b; 

Boldt et al., 2014). Indicators have been applied in the context of EBM to quantify ecosystem 

status and trends, assess management performance across disparate objectives, and evaluate the 

strength and synergies of drivers (e.g., Shin et al., 2010a). For example, under the European Marine 

Strategy Framework Directive, decision makers use indicators to measure progress toward Good 

Environmental Status (Borja et al., 2013). In the US, the status and five-year trend of indicators 

relative to the long-term mean are used as proxies for ecosystem status within US Integrated 

Ecosystem Assessments (Harvey and Garfield, 2017) and related report cards (Zador et al., 2017). 

The choice of which indicators to include in assessments of ecosystem status is a difficult, but 

essential, component of EBM. No single indicator sufficiently quantifies all relevant objectives 

(Kleisner et al., 2015; Masi et al., 2017) and not all indicators are applicable to all management 

systems (Blanchard et al., 2010; Boldt et al., 2014; Coll et al., 2016). Indicators should be limited 

to those that are directly relatable to observations and theoretically sound. They should also be 

responsive, specific, and sensitive (Jennings, 2005; Rice and Rochet, 2005; Niemeijer and de 

Groot, 2008; Kershner et al., 2011). To be responsive they should reflect ecosystem changes within 

a short time period (here we choose one to two years). Only those that respond in a known way 

are specific. Sensitive indicators are those with smooth, monotonic, and strong responses. Their 

cost effectiveness is often based historical availability, measurability, and quantifiability. Finally, 

their familiarity to the general public can be assessed using expert opinion and stakeholder input. 
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Historically, indicator-attribute relationships have been assessed for their responsiveness and 

sensitivity using correlation (e.g., Fulton et al., 2004; Samhouri et al., 2009). However, the 

significance of the correlation and potentially the correlations themselves will be biased if past 

values of the attribute affect future attribute values (i.e., autocorrelation; Orcutt and James, 1948; 

Shumway and Stoffer, 2011). The previous will also be true if the indicator is autocorrelated, which 

is often the case but its affect is often wrongly assumed to be negligible. Multivariate 

autoregressive (MAR) state-space models (Ives, 1995; Ives et al., 2003) offer an unbiased 

approach to estimating interactions among time series (Chapter 1). The MAR approach provides 

inference on how much of the variability in the data can be explained by “direct” linear changes 

between the indicator and the attribute versus shared “co” variability due to factors external to 

themselves or their past “self” (Sugihara, 1995). Note that the partitioning of variability is different 

from inferring causation. Nevertheless, disentangling variability is an important step in assessing 

indicator-attribute relationships and could potentially reduce the number of contradictions 

observed when additional years of data are added (Sugihara et al., 2012).  

Here, we extend previous work on indicator-attribute relationships (e.g., Fulton et al., 2005; 

Samhouri et al., 2009; Shin et al., 2018) to demonstrate the need to account for autocorrelation 

when assessing indicators for management purposes. We used output from eight simulations 

representing ecosystems from all over the globe (Olsen et al., 2018) to identify if indicator 

performance varies by ecosystem. Additionally, future simulated ecosystem dynamics were 

forced, in part, using gradients of changes in fishing, ocean acidification, or marine protected areas 

to infer if indicator performance depends on drivers of change. The comparison was conducted 

across a range of drivers in hopes of providing inference that will be robust to a wide range of 

future conditions.  

2.2 METHODS 

We analyzed output from eight marine ecosystem models (Table 2.1; Figure 2.1; detailed in 

Olsen et al., 2018) to quantify the sensitivity and specificity of 12 indicators (Table 2.2) relevant 

to EBM. As detailed below, analyses included the following steps: project each ecosystem model 

forward in time for fifty years under base-case conditions or one of three drivers of change, extract 

relevant model outputs to calculate indicators and attributes, calculate the sensitivity of indicator-

attribute relationships, and investigate indicator specificity. Measures of sensitivity were 
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investigated using MAR models that quantify relationships among time series while accounting 

for autocorrelation (Chapter 1). Results from MAR models were compared to those based on 

Pearson cross correlation coefficients.  

2.2.1 Ecosystem models 

Detailed end-to-end ecosystem models (Rose et al., 2010), such as Atlantis (Fulton et al., 

2004, 2011), allow for the model developer to control for factors that often plague data sampled 

from actual ecosystems, while systematically adding or removing complexity. Atlantis is a cost-

effective tool for evaluating management strategies (Fulton et al., 2014; Dichmont et al., 2016) 

and indicators (Fulton et al., 2005; Smith et al., 2015; Masi et al., 2017), allowing for the 

evaluation of management actions without having to implement them in reality. Typically, 

simulations have been parameterized for individual geographic regions. Recent research has 

highlighted the value of comparing a wide range of modelled ecosystems subject to similar drivers 

of change (e.g., Megrey et al., 2009; Olsen et al., 2018). The included ecosystems spanned four 

ecosystem types, coral reef (n = 1), open ocean (n = 4), gulf (n = 2), and brackish waters (n = 1). 

Atlantis was used to represent the dynamics of each ecosystem. Briefly, Atlantis is a 3-

dimensional, end-to-end ecosystem modelling framework. The deterministic model allows for 

two-way coupling between environmental and anthropogenic drivers of change and their direct 

and indirect effects on ecosystem components. Bottom-up and top-down forcing facilitate realistic, 

complex future ecosystem dynamics that cannot necessarily be predicted a priori. A system of 

forward differential equations simulates ecosystem dynamics specific to spatial polygons, 

typically in 12-hour time steps. Polygons are designed to match major geographical features of the 

ecosystem such that homogeneity can be assumed within a polygon. Polygons are vertically 

resolved with up to five water-column layers, a sediment layer, and an epibenthic layer. Movement 

of biological groups can occur within polygons, between polygons, and groups can migrate in and 

out of the model domain. Modelled biological groups often include multiple species centered on a 

specific guild (e.g., small pelagic fish). Model developers can also choose to make groups based 

on a single species. Detritus groups (labile detritus, refractory detritus, and carrion) are modelled 

as aggregate biomass pools. Vertebrate groups are structured by age. Other biological groups, such 

as invertebrates, can be modelled as aggregate biomass pools or structured by age.  
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Fishery dynamics can include multiple fleets, each with their own set of target and bycatch 

groups and fishing areas. Spatial closures to fishing can be included as marine protected areas, and 

fishing dynamics can range from simple harvest rates to complex agent-based parameterizations. 

Here, ecosystems were parameterized in terms of constant fishing mortality rates to generate 

catches that approximated recent observed time series and biomass levels that approximated 

relative biomasses estimated from survey data. In the case of the Nordic and Barents Sea 

ecosystem, catches were scaled in proportion to their maximum sustainable yield. Additional 

models parameterized in terms of dynamic effort fishing mortality rates were included for the NE 

US and SE Australia ecosystems to allow fishing rates to vary across time to better approximate 

observed time series (see Link et al., 2011; Fulton et al., 2014). 

Key Atlantis outputs include time series of catches and abundances of biological groups. 

These outputs are compared to empirical data during the calibration stage such that modelled 

productivity and resilience closely replicate historical trends where appropriate (see Table 2.1 for 

relevant primary publications). The initial year for each ecosystem depended on data availability, 

but all ecosystems were projected forward for fifty years from their respective starting year. The 

first twenty years were considered a burn-in period to account for transient behavior, leaving thirty 

years for the analysis.  

2.2.2 Drivers of change 

Detailed predictions of marine ecosystem responses to anthropogenic drivers of change are 

challenging (Evans et al., 2011), but scenario approaches (Maury et al., 2017) are one tool that has 

been utilized to explore a range of future conditions. Previous simulation work in individual 

ecosystems has shown that the largest tradeoffs among stakeholder groups and among policy goals 

often result from scenarios related to ocean acidification, selective fishing, and marine protected 

areas (Kaplan et al., 2012; Weijerman et al., 2016b). Therefore, we chose to explore these three 

drivers. For simplicity, we considered the drivers independently rather than creating bundled 

scenarios with multiple drivers and cumulative effects. The eight ecosystem models were 

developed for a range of purposes and the simulated effects of drivers will be specific to some of 

the choices made by model developers. Base-case scenarios typically represent a recent year for 

each ecosystem. Drivers were parameterized as consistently as possible across ecosystems by 

implementing parallel relative changes to the ecosystem-specific base-case scenarios. For 
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example, the Gulf of Mexico base-case scenario represents conditions in year 2012 and includes 

24 marine protected areas (Ainsworth et al., 2015) and the N Gulf of California base-case scenario 

represents conditions in year 2008 and does not have marine protected areas (Morzaria-Luna et 

al., 2013), so ensuring that 10% of the continental shelf was protected by marine protected areas 

led a larger percent increase in marine protected areas for the N Gulf of California than the Gulf 

of Mexico. Scenarios include the following and were also used in Olsen et al. (2018):  

1. Base case: The base-case scenario represents business-as-usual for each ecosystem 

based on published values (Table 2.1) and served as the reference scenario. Fishing 

mortality was ecosystem-specific and specified at the level used for calibration. 

Therefore, fishing was constant with respect to time for all models except the two 

models parameterized using dynamic effort (NE US and SE Australia). 

2. Fishing: Fishing mortality was altered (eliminated, halved, or doubled) from base-case 

levels. Fishing scenarios were implemented for each of the following groups in turn if 

they were included in the ecosystem: invertebrates, small-pelagic fish, demersal fish 

and sharks, large-pelagic and highly-migratory species, and all fished groups. Fishing 

remained at base-case levels for all other groups in an ecosystem that were not 

identified as the group of concern. For example, fishing of demersal sharks and fish 

were eliminated while all other fishing rates were kept the same as the base-case 

scenario was one fishing scenario. The Nordic and Barents Sea ecosystem was 

excluded from fishing scenarios because fishing mortality was parameterized in terms 

of maximum sustainable yield rather than historical fishing. The two dynamic effort 

models were also excluded because fishing mortality was time varying. 

3. Ocean acidification: The two ocean-acidification scenarios increased natural mortality 

of calcifying algae, corals, coccolithophores, echinoderms, and mollusks (i.e., groups 

thought to be affected by ocean acidification) to mimic hypothesized changes in 

survival (Kroeker et al., 2013). The more extreme scenario added 1% to the base-case 

natural-mortality rate (day-1) for the previously listed taxa, and the less extreme 

scenario added 0.5%. 

4. Marine protected areas: Three no-take marine protected area scenarios were 

investigated. Protected areas were initiated starting from shore and extending out 

towards the edge of the continental shelf (250 m) until 10, 25, and 50% of the 
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continental-shelf area was closed to fishing. These scenarios represent a reduction in 

total fishing mortality rather than a displacement because fishing rates outside of the 

closed areas were maintained at the same rates used in the base case. The constant-

effort version of the NE US model was excluded from these scenarios because the 

dynamic-effort version was hypothesized to provide a more realistic representation of 

fishers’ potential responses to protected areas.  

 

2.2.3 Attributes 

Attributes were chosen for their theoretical importance to ecosystem structure and function 

(Bradshaw, 1984). Investigated attributes included (a) biomass of groups targeted by fisheries, (b) 

total biomass, (c) mean trophic level (TL) of the ecosystem (Christensen, 1996), (d) net primary 

productivity (NPP; Odum, 1985), and (e) total biomass divided by NPP. The first three attributes 

summarize food-web structure and the latter two relate to energetic attributes of the community. 

Biomass of groups with a TL≤1 were excluded from (b) and (c) and TL<1 were excluded from (d) 

because of their ephemeral nature and sometimes exceptionally large biomass. We acknowledge 

that additional or different attributes could have been examined, but we leave that for future 

research. 

Attributes are not easily measured in the real world. For these simulated ecosystems, we could 

calculate their values using data from all species, including species not sampled by surveys, not 

targeted by fisheries, and not assessed using stock assessments because simulations allow the truth 

to be known. Indicator performance was then measured by their ability to track these ecosystem 

attributes of interest. In this way, simulation can thus act as an initial filter to eliminate indicators 

that are unlikely to track attributes in the real world.  

2.2.4 Indicators 

Of the many potential indicators, we chose to evaluate the suite of indicators that were 

investigated by the Indicator for the Seas (IndiSeas) Working Group (Table 2.2). Survey biomass, 

stability of the survey biomass, biomass-weighted mean size of surveyed fish, biomass-weighted 

mean life span of surveyed fish, proportion of the survey biomass comprised of predatory fish, 

biomass-weighted mean TL of the survey, proportion of those groups with an assessment that 
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shoed a declining trend, and the proportion of those groups that were estimated to be at greater 

than 60% of their unfished biomass were based on survey data. Biomass-weighted mean intrinsic 

vulnerability index (IVI; Cheung et al., 2005) of fish catches, biomass-weighted mean TL, and 

biomass-weighted mean tropic index of the catch were derived from catch data. Inverse fishing 

pressure used both survey and catch data. Some of these indicators would also need other data to 

provide life-history information or for an assessment of their status if the data were empirically 

collected as opposed to simulated output. IndiSeas chose these 12 indicators for their ability to 

quantify the impact of fishing on ecosystem status based on several criteria (sensu Rice and Rochet, 

2005). Criteria for their assessment included their hypothesized comparability across ecosystems 

(Shin and Shannon, 2010; Shin et al., 2010b; Coll et al., 2016). Indicators and attributes are 

highlighted using quotation marks rather than acronyms for clarity.  

Some specifications of the IndiSeas calculations had to be adapted for Atlantis simulated 

output (Table B.1; see Appendix B for more details). For instance, data used by IndiSeas were of 

individual fish, but Atlantis models cohorts of fish. Consequently, “fish size” was changed to be 

the survey-biomass weighted mean of maximum fish size (Worm et al., 2009) rather than 

individual fish size. Utilized life-history information for multi-species groups was from the most 

dominant species or from a biomass-weighted mean depending on choices made by the model 

developer. Estimation of self-, direct-, and co-interactions 

Indicator-attribute relationships were quantified using MAR models, a tool for analyzing 

time-series data (Ives, 1995; Ives et al., 2003). The approach regresses an indicator against an 

attribute to quantify interactions while accounting for relationships of each time series with their 

past self and common relationships of both time series with their external environment. Prior to 

fitting the models, indicators and attributes were standardized to have a mean of zero and a 

standard deviation of one to facilitate the comparison of values collected on different scales and to 

increase MAR model convergence compared to modelling values on their absolute scale. The 

model, , was fit to the indicator and attribute time series using the Multivariate 

Autoregressive State Space (MARSS) package (Holmes et al., 2012) in R (R Core Team, 2018). 

Here,  is a vector of length two representing the attribute and indicator at time ,  is a vector 

of length two representing the factors not explicitly included in the model dynamics at time , and 

 is a two by two matrix.  
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The  matrix included parameters to estimate interactions between each time series with itself 

at the previous time step (termed self-interactions) on the diagonal, interactions between the 

attribute at the previous time step and indicator in the lower off diagonal ( , ; termed direct-

interactions), and could estimate the direct-interaction between the indicator at the previous time 

step and the attribute in the upper off diagonal ( , , but ,  was fixed at zero because it was 

assumed that indicators do not affect attributes. Any time lag or combination thereof could be 

investigated, but a 1-year lag was investigated because managers normally work within a short 

time horizon.  

The variance-covariance matrix (Q) of the stochastic dynamics,  ~ MVN(0, Q), included 

parameters to estimate the variance of the attribute ( , ) and the variance of the indicator ( , ) 

on the diagonal and a single parameter to estimate the covariance on the off diagonal (i.e., ,

, ). The standardized covariance (termed co-interaction), , / , , , provided a measure 

of the synchrony in the temporal variability of the time series after accounting for the direct- and 

self-interaction(s). This interaction could include changes due to extrinsic environmental 

conditions that lead to changes in both the indicator and the attribute.  

Parameter estimates from the MAR models were based on maximum likelihood estimation 

and confidence intervals were calculated using parametric bootstrapping based on 20 samples 

(Stoffer and Wall, 1991). Bootstrapping was used rather than asymptotic variances because the 

assumed symmetry of the asymptotic distribution can lead to biased estimates when variance 

parameters are small. 

 

2.2.5 Calculation of sensitivity from direct- and co-interactions 

An indicator-attribute relationship was considered sensitive if the direct- or co-interaction was 

positive and the confidence interval did not cross zero. Negative relationships were also considered 

for two attributes, “total biomass” (except between “biomass” and “total biomass”) and “NPP” 

because the direction of movement in the indicator as the ecosystem experienced fishing could 

depend on the type of fishing (Samhouri et al., 2009). Nevertheless, the signs of the non-zero co- 

and direct-interactions had to match for the relationship to be considered sensitive. We did not 

investigate ranges of sensitivity because we had no a priori knowledge of how strong an interaction 

should be to be of use to management, only that it should be non-zero. 
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2.2.6 Calculation of specificity from sensitivity 

Specificity has been defined several ways, such as an indicator being specific if it is only 

sensitive to a single attribute (discussed below as coverage; Kershner et al., 2011), if it accounts 

for a single species (discussed below as representativeness; Hattam et al., 2015), or if it is affected 

by a single external pressure (Rice and Rochet, 2005). We adopted the following definition of 

specificity close to that of Rice and Rochet (2005) to disentangle the impacts of fishing from other 

drivers: the proportion of relationships for a given indicator and attribute combination that were 

sensitive out of all investigated relationships for that indicator-attribute combination across drivers 

of change. Specificity was also calculated across ecosystems for a given driver of change. The 

magnitude of specificity is meant to provide inference on how difficult it would be to infer that 

changes in an indictor were the result of changes in a specific driver in the presence of multiple 

drivers. For example, if 15 of the 22 simulated scenarios (1 base case, 16 fishing, 3 marine 

protected areas, and 2 ocean acidification) demonstrated a sensitive relationship between 

“predators” (indicator) and “target biomass” (attribute) in the California Current, then the 

specificity of the relationship would be 0.68. If 20 of the 22 scenarios demonstrated sensitive 

relationships the specificity would be 0.91, insinuating it would be difficult to attribute changes in 

the indicator to a specific driver.   

2.2.7 Calculation of representativeness and coverage 

Indicator performance was further summarized in terms of “representativeness” and 

“coverage”. Representativeness was measured by investigating relationships between indicators 

and directly analogous attributes (a form of “self-test”). For example, TL of the catch (indicator) 

was tested against TL of ecosystem (attribute), highlighting how well (or poorly) fisheries data 

represented the ecosystem. Second, indicators that tracked more than one attribute related to 

ecosystem structure and function (Table B.2) were labeled as having high coverage. Indicators 

with low coverage may be preferred if the aim is to identify “diagnostic” indicators, determining 

changes in specific attributes, while indicators with high coverage may be useful as general 

bellwethers of ecosystem changes in structure and function.  
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2.2.8 Correlation 

The analysis was repeated using Pearson’s cross correlation coefficients as a cautionary 

example of the implications of ignoring the time-series nature of the “data”. Here, sensitive 

relationships were those that were greater than (or less than for total biomass and NPP) what would 

be expected assuming a significance level of 0.05 and a sample size of 30 (i.e., 0.36). Lag-1 cross 

correlations were compared to direct-interactions because they were parameterized to investigate 

the same lag. Lag-0 cross correlations were compared to co-interactions. It would not be expected 

that the absolute values would be similar because cross correlation measures total variance and 

MAR models partition the variance into the three interactions (Chapter 1).  

2.3 RESULTS 

2.3.1 Low sensitivity of indicators to attributes overall 

The indicators included in this analysis were expected to be good proxies for ecosystem 

attributes. Only one-third (33%) of the 10,965 investigated relationships were sensitive (Table 

B.3). Indicator-attribute relationships tended to be sensitive for either direct- or co-interactions but 

not both (see for example, upper and lower panels of Figures 2.2-2.3, respectively). Co-interactions 

were often stronger in magnitude than direct-interactions (upper versus lower panel of Figure 2.3, 

respectively), suggesting that indicators and attributes are synchronously responding to external 

pressures rather than attributes leading to lagged changes in indicators. Sometimes (7%) these 

relationships were opposite in sign, a result most common for the “fish size” and “fish life span” 

indicators. Relationships between “total biomass” and “TL of the survey” had the largest number 

of simultaneously positive direct- and co-interactions.  

Plots of indicators versus attributes helped show why some interactions were negative and 

why some models did not converge. The provided example between “biomass” and “biomass of 

the ecosystem” in the SE Australia (Figure 2.2) and the Chesapeake Bay (Figure 2.3) ecosystems 

illustrate the prominent patterns seen. First, the time-series data extracted from the Atlantis output 

exhibited strong self-interactions that can be seen by following sequentially numbered points 

(estimates of the self-interactions are printed on the respective axes). Model output was relatively 

stable because it was reported for the entire spatial domain on yearly time steps. Second, estimates 
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of co- and direct-interactions were sometimes opposite in sign compared to lag-0 and lag-1 

correlation coefficients (see Figure 2.3 and below for more details). 

Estimated self-interactions were generally stronger than estimated direct-interactions. This 

was particularly true when the self-interaction of the indicator was large and positive (cone-shape 

pattern in upper right panel of Figure 2.4). For example, the self-interaction of “biomass” was 

greater than one and the direct-interaction with “biomass of the ecosystem” was less than 0.1 in 

the Chesapeake Bay ecosystem under the base-case scenario (Figure 2.3). The pattern was the 

opposite for attributes but weaker. That is, some of the strongest direct-interactions were estimated 

for attributes with large self-interactions (top left panel of Figure 2.4). Self-interactions were the 

most extreme for “biomass stability”. Neither of these patterns were apparent between co-

interactions and self-interactions (bottom row in Figure 2.4).  

2.3.2 Representativeness 

It was hypothesized that indicators would track similarly calculated attributes in a positive 

manner, but 24% of the relationships included to investigate representativeness were negative 

(Tables 2.3 and B.4-B.6). “Sustainable stocks”, “TL of the survey”, and “biomass stability” were 

the least representative indicators (Table B.3). For indicators that were representative, the sensitive 

relationship was more likely to be a co-interaction (Tables B.3 and B.4) rather than a direct-

interaction (Tables B.5 and B.6), which was not surprising because indicators should represent the 

current state of the system and not the state of the ecosystem from the prior year. 

Representativeness appeared to depend on how thoroughly the groups included in that particular 

attribute were included in the catch or survey data (see % targeted and % surveyed in Table 2.1). 

For instance, “predators” and indicators related to TL failed to represent the Guam ecosystem 

(Table 2.3) because only two of the four predatory fish groups were surveyed and only one was 

targeted although almost half of the ecosystem was surveyed. In contrast, predators were more 

representative in the Gulf of California because some of the key predatory fish are surveyed 

although only 18% of all species were surveyed. Representativeness also depended on how fishing 

was implemented. For example, “trophic index of the catch” was sensitive to “trophic index of the 

ecosystem” in the NE US only when fishing was implemented using constant rates. Catch-based 

indicators were the most representative when fishing on all groups increased or fishing on small 

pelagics decreased (Table B.4).  
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2.3.3 Specificity 

Indicator performance was ecosystem-specific but tended to not depend on the drivers of 

change. Consequently, specificity was generally higher (i.e., more models estimated sensitive 

interactions that did not conflict in sign) but more variable when calculated with respect to a given 

ecosystem across all drivers of change than driver of change across all ecosystems (Figure 2.5 and 

Figure B.1 as opposed to Figures A2-A3). Conversely, if an indicator tracked an attribute well in 

a given ecosystem, it did so irrespective of which driver of change acted on the system. 

Relationships within an ecosystem were generally centered on the base-case scenario with 

scenarios related to ocean acidification or fishing leading to the largest changes in the strength of 

the relationship (purple crosses and green triangles, respectively, in Figures B.4-B.15). These more 

extreme values within an ecosystem were generally opposite in sign compared to the median 

response. Additionally, specificity appeared to be independent of the strength of the relationship, 

where stronger relationships did not lead to relationships that were more likely to be sensitive 

across ecosystems or drivers of change. For example, the co-interaction between “TL of the catch” 

and “biomass” was similar in strength for Chesapeake Bay and the Gulf of California but more 

specific in the latter (bottom row, second panel from the right in Figure 2.5).  

2.3.4 Coverage 

Two indicators, “biomass” and “TL of the survey”, had the highest coverage of the attributes 

(Table B.3). These indicators had the highest number of MAR models with sensitive direct- and 

co-interactions for three of the five attributes. Models investigating the “intrinsic vulnerability 

index” to “target biomass” led to many sensitive relationships, but “intrinsic vulnerability index” 

was ranked 4th in terms of coverage because it had few sensitive relationships with the remaining 

four attributes. “Fish life span” also had fairly high coverage, but its coverage was largely related 

to its sensitivity to “total biomass” and “NPP”.  

2.3.5 Poor-performing indicators 

 “Non-declining species” (Figure B.4) and “sustainable stocks” (Figure B.5) are based on 

counts (whole numbers) of species above specified thresholds. These indicators covered the least 

number of attributes and were the least representative of those investigated (Table B.3). Of the 954 
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potential indicator-attribute relationships investigated with “sustainable stocks” as the indicator, 

only 658 successfully lead to the estimation of an asymptotic variance-covariance matrix. The 

indicator was often constant over multiple years, and the MARSS framework (Holmes et al., 2012) 

had difficulty parsing the small amount of variability in the data among the parameters. “Non-

declining species” had relatively high model convergence (93%), but only 3% of the models 

estimated sensitive direct- and co-interactions. 

2.3.6 Correlation 

The sign and the magnitude of cross correlation coefficients did not always match the MAR 

results. This was not surprising because correlation coefficients are bound between [-1,1]. It was 

concerning that for some relationships the sign changed when the time-series properties of the data 

were accounted for. Many co-interactions had negative lag-0 cross correlation coefficients when 

the co-interaction was estimated as positive, but positive lag-1 cross correlation coefficients when 

the direct-interaction was negative (Figure B.16). For example, cross correlations between 

“biomass” and “biomass of the ecosystem” were negative while the direct- and co-interactions 

were positive (Figure 2.3).  

2.4 DISCUSSION 

There is not, and probably will not ever be, a universal indicator for EBM. Instead, multiple 

appropriate indicators must be chosen such that managers can be informed about the status of their 

goals. Choosing appropriate indicators requires understanding indicator-attribute relationships, 

which we show can be facilitated using MAR models. We assumed that indicators should track 

attributes relevant to EBM (Bradshaw, 1984), “TL of the ecosystem”, “target biomass”, 

“ecosystem biomass”, “NPP”, and the ratio of the latter two. “Biomass” tracked many of these 

attributes for most drivers of change and across most ecosystems. Fewer of the IndiSeas indicators 

(Coll et al., 2016) tracked the relevant ecosystem properties than hypothesized and indicator 

performance was ecosystem specific. Thus, we suggest that indicator selection be ecosystem-

specific and informed by simulation testing as well as empirical validation. 

Multivariate autoregressive models provided descriptions of indicator and attribute time series 

while accounting for autocorrelation in the data. The framework decomposes temporal changes in 

the indicator and explicitly apportions them to (1) the indicator at the previous time step (self-
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interactions), (2) the current environment (co-interactions), and (3) the attribute in the previous 

time step (direct-interactions). Including (1) is important because autocorrelation can increase the 

likelihood of estimating spurious relationships (Chapter 1). Self-interactions are similar to 

autocorrelation but they are not bound between [-1,1]. Direct-interactions were smaller on average 

when indicator time series exhibited a positive self-interaction. Previous work on indicator 

performance also documented decreased cross correlation between indicators and drivers of 

change when the indicator was autocorrelated (Probst et al., 2012) and increased differences 

between cross correlation and MAR models (Chapter 1). Thus, previously documented 

correlations between indicators and attributes that assumed the effect of autocorrelation was 

negligible and may need to be revisited (e.g., Fulton et al., 2005).  

Applications of MAR models are well documented and have been well-used to highlight the 

intricacies of community dynamics. However, their use in ecology beyond understanding plankton 

communities is limited (Hampton et al., 2012). Their use is becoming increasingly tractable as 

ecological time series become longer. Furthermore, no additional mechanistic understanding 

beyond that needed to calculate correlation coefficients is needed to fit the models. They offer the 

added benefit of being able to simultaneously test multiple hypotheses such as was done here by 

setting the effect of the indicator on the attribute ( , ) to zero. Lags other than one can be 

investigated, or multiple lags can simultaneously be investigated. Spatial complexity can be 

accounted for by including rather than summarizing across spatial replicates (e.g., Ward et al., 

2010), Bayesian estimation can allow for the inclusion of priors (MacNally et al., 2010), etc. 

Perhaps most importantly, results include confidence intervals based on the amount of information 

in the data. This differs from correlation that uses sample size and significance level, which should 

be adjusted for the presence of autocorrelation. Adjusting for autocorrelation is widely recognized 

but no method is best for all situations (Pyper and Peterman, 1998) and many methods depend on 

estimating the degree of autocorrelation present in the data, which is difficult with short time series 

(Thompson and Page, 1989). We hope that the results of this manuscript encourage future analyses 

of indicator-attribute relationships to account for autocorrelation using MAR models because 

although MAR and correlation may provide similar point estimates the value of point estimates 

without measures of uncertainty “is of little use” (p. 637 in Jollife, 2007). 

Indicator performance suggests conclusions about their potential utility. “Biomass” and “TL 

of the survey” were the most sensitive indicators of those investigated. Both indicators were 
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particularly sensitive to “biomass of the ecosystem” with respect to co-interactions. Previous work 

also highlighted “TL of the survey” (Jiming, 1982; Gascuel et al., 2016) as a good indicator. Coll 

et al. (2016) noted that “life span” and “predators” typically agreed with “TL of the survey” but 

we suggest that “predators” may be a better indicator in general because it does not depend on diet 

or life-history data (see below for more details). Negative relationships were more common 

between “TL of the survey” and “biomass of the ecosystem” than “biomass” and “biomass of the 

ecosystem”. Changes in trophic structure often follow intense periods of fishing (Bell et al., 2014, 

2018) and the negative relationships could have resulted from competitive releases due to declining 

predators. “Biomass” was a particularly sensitive indicator as measured by the co-interaction, and 

generally, this interaction (along with the self-interaction) seemed to explain more of the time-

series patterns than the lagged direct-interaction. There are many instances in which managers 

might only be interested in indicators that are “immediately” synchronized in their responses to 

the ecosystem, such as temperature as a proxy for tuna distribution (Hobday and Hartmann, 2006). 

Perhaps future measures of sensitivity should not be informed by lagged responses. Care should 

be taken when interpreting direct- versus co-interactions because direct-interactions are more 

likely to be correlated with estimates of self-interactions than co-interactions because they are 

parameterized using the same matrix and both involve lagged interactions. We choose to base 

sensitivity on both the co- and direct-interactions because if both were sensitive then it decreased 

the chances for incorrect inferences when the data are not collected synchronously (e.g., a survey 

early in the year versus a fishery later in the year) or processes of interest occur at slightly 

mismatched time scales. 

Indicators that were well sampled and based on direct output from the Atlantis model (and in 

the real world would be sampled at sea with minimal modeling required) performed better than 

those that need analysts to perform additional calculations. Specifically, “inverse fishing”, 

“biomass stability”, “sustainable stocks”, and “non-declining species” were the least sensitive 

indicators. The latter three were also the least representative. These indicators required calculations 

beyond dividing by biomass such as calculating the coefficient of variation. The calculations 

themselves were not difficult but led to truncated data in terms of the length of the time series or 

number of groups represented. Additionally, a lack of variability in some of the data used as input 

to the MAR models decreased model convergence relative to output from the most variable 

ecosystems. For instance, stopping all fishing led to very few overfished stocks and measurements 
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of “sustainable stocks” that were constant across the entire time series. Relatively stable 

environmental forcing in some models also led to low variability in the output and hindered 

convergence in the MAR models. 

Results regarding TL indicators should be interpreted with caution. Outside of a simulation 

context “TL of the survey”, “TL of the catch”, and “trophic index” would have required additional 

calculations based on diet data. Instead, these indicators are essentially manipulated versions of 

biomass, catches, and a subset of catches, respectively, because TL information was either 

extracted from www.fishbase.org or supplied by model developers. Calculating TLs is difficult 

because TLs can vary with size, time, and space (Jennings et al., 2002; Vinagre et al., 2012). Fulton 

et al. (2005) found that TL indicators were sensitive to decreased quality of abundance information 

as well. Results presented here did not include observation error, but they do highlight a third 

source of bias, selectivity (Trenkel and Rochet, 2003). The selective nature of fishery and survey 

protocols to not capture all available species with an equal probability led to lower indicator 

representativeness than what was expected. Results highlight how “marine trophic index” might 

be easier to interpret than all-encompassing TL indicators because it uses an explicit cut-off TL 

level to focus on high TL organisms that tend to be more threatened and potentially better sampled 

(Pauly and Watson, 2005).  

The poor performance of several indicators thought a priori to be good indicators highlights 

the need for more work on indicator performance. The IndiSeas list can act as a starting point but 

needs to be followed up with additional screening. In this regard, simulations could be used as a 

tool to check that indicators are sensitive to attributes that are hard to measure empirically, instead 

of relying on correlations. For example, two ecosystems (Chesapeake Bay and California Current) 

demonstrated a high dependence of predators on productivity from shelled invertebrates, which 

declined under ocean acidification scenarios; on the other hand, in the NE US this change in 

benthic productivity was shunted to predators via a deposit feeder group (e.g., amphipods and 

isopods) that would be hard to survey accurately.  

Fulton et al. (2005) highlighted differences in indicator-attribute relationships under two axes 

of uncertainty not investigated here, data aggregation and observation error. The latter highlights 

the usefulness of indicators based on data that are easier to collect such as biomass of groups 

targeted by fisheries rather than TL, which depends on diet data. Fulton et al. (2005) suggest that 

TL may only be a good indicator when observation error is low. Our results are based on zero 
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observation error. We left the addition of observation error for future work because one goal of 

this work was to introduce MAR models as a framework for assessing indicator-attribute 

relationships not to provide management with a list of operational indicators. Results are still 

informative for managers and offer a first pass at indicator selection because indicators should at 

a minimum track attributes in an observation-error-free context. Future MAR models can be 

parameterized to account for observation error using a state-space formulation (Hinrichsen and 

Holmes, 2009; Holmes et al., 2012). The discrepancies in indicator performance across levels of 

data aggregation that Fulton et al. (2005) found could be a result of using correlation because 

aggregating data to the ecosystem level may have introduced autocorrelation (Katz, 1988; Chapter 

1). Data provided for this analysis were summaries of the entire ecosystem but Atlantis can output 

more fine-scale data. Future work could assess the tradeoffs of data aggregation versus estimating 

spatial autocorrelation within an ecosystem.  

Marine ecosystems across the globe differ markedly, thereby decreasing the likelihood that a 

one-size-fits-all set of indicators that capture all attributes of all systems will be found (Coll et al., 

2010; Heymans et al., 2014; Pikitch et al., 2014). Ecosystems with similar maximum depth tend 

to behave similarly (Olsen et al., 2018) and could be a tangible way to summarize indicator 

recommendations. Open-ocean ecosystems have low productivity and include several guilds in 

moderation. Shelf systems tend to be dominated by benthic productivity. Consequently, 

biodiversity indicators weighted by guild may be sufficient for open-ocean systems but may fail 

to reflect losses of key benthic species in shelf systems. Results corroborate previous work 

showing that indicators are ecosystem-specific rather than driver-specific (Shannon et al., 2010, 

2014; Coll et al., 2016) and the need for multiple comparisons (Murawski et al., 2010; Essington 

and Plagányi, 2014). This fortunately suggests that previous work testing indicator performance 

under fishing scenarios (e.g., Samhouri et al., 2009) will be relevant for most future ecosystems 

influenced by other drivers. Not having to test ecosystems in terms of all potential drivers of 

change could mean faster implementation of EBM.  

Overall, our results illustrate that simulation and MAR models, in combination, offer a useful 

method for characterizing indicator-attribute relationships prior to their use in management. 

Atlantis also offers the ability to test indicator performance under dynamic management based on 

indicator status (i.e., management strategy evaluation; Punt et al., 2016). Thus, dynamic 

simulations could be used in the future to determine the consequences of using indicator-thresholds 
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such that management actions based on indicator status produce desired responses within a level 

of acceptable risk (Fay et al., 2015). Simulations could also facilitate determining threshold levels 

of measurement error that can be present before MARSS models fail to estimate a signal through 

the noise. These simulations would be helpful for determining which empirical data sets can be 

used to further vet indicator-attribute relationships.   
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2.5 TABLES 

Table 2.1. Details of the eight Atlantis ecosystem models. Model-specific spatial extents (area) are 

divided into a specified number of polygons (n polygons) and each polygon is comprised of a 

number of vertical layers (n layers). The number of modelled groups included in the ecosystem 

with a trophic level greater than one (n groups) is used to calculate the percent of included groups 

that are “fish” (i.e., bony and cartilaginous fish groups), groups that are adequately “surveyed”, 

“assessed” with fishery-independent or -dependent data providing a measurement of their status, 

and the number of groups “targeted” by fisheries. Note that the table is continued below, and the 

following abbreviations are used: Canada (CAN), European Union (EU), Mexico (MEX), and 

United States of America (USA). 

ecosystem abbreviation type region country reference 
SE Australia AustSE ocean SW Pacific Australia Fulton et al., 2005 

California Current CalCu ocean E Pacific CAN, MEX, USA Marshall et al., 2017 
Chesapeake Bay CAM brackish W Atlantic USA Ihde and Townsend, 2017 

N Gulf of California GOC gulf NE Pacific MEX Morzaria-Luna et al., 2013 
Gulf of Mexico GoMex gulf Gulf of MEX Cuba, MEX, USA Ainsworth et al., 2015 

Guam Guam reef W Pacific USA Weijerman et al., 2016a 
NE US Neus ocean NW Atlantic USA Link et al., 2010 

Nordic & Barents Sea NOBA ocean NE Atlantic EU Hansen et al., 2016 

 
area 

(km ) 
n polygons n 

layers 
n fleets initial year n groups % fish % surveyed % 

assessed 
% 

targeted 
3000000 71 5 33 2005 54 57 31 54 54 
1500000 89 7 20 2013 73 49 59 44 40 

8896 97 5 1 2009 39 54 41 31 41 
57800 66 7 33 2008 51 53 18 10 73 

564200 66 7 21 2012 78 62 46 42 47 
110 55 2 7 1985 32 59 47 0 47 

293000 22 4 18 1964 37 51 70 76 68 
3700000 60 7 22 1981 45 44 44 36 36 
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Table 2.2. Ecological indicators  selected by the Indicator of the Seas (IndiSeas) working group to 

track the direct and broader impacts of fishing on exploited marine ecosystems (Coll et al., 2016). 

Abbreviation Label Definition 
BS Biomass stability 1 / Coefficient of variation (10-year based on TB) 

invF Inverse fishing TB/catch 
IVI Mean vulnerability Biomass-weighted mean intrinsic vulnerability index 

of fish catches (Cheung et al., 2005) 
LG Fish size Biomass-weighted mean max length of surveyed fish 
LS Life span Biomass-weighted mean max life span of surveyed fish

MTI Trophic index Biomass-weighted mean trophic index of catch (Pauly 
and Palomares, 2005) 

NDES Non-declining 
species 

Proportion of non-declining exploited species that have 
an assessment of their status (Kleisner et al., 2015) 

PF Predators Proportion of survey biomass that is predatory fish 
SS Sustainable stocks Proportion of non-fully exploited stocks (i.e., biomass 

> 60% of unfished biomass) of those that could be 
assessed 

TB Biomass Biomass of surveyed groups 
TLc Trophic level of 

catch 
Biomass-weighted mean trophic level of catch 

TLs Trophic level of 
survey 

Biomass-weighted mean trophic level of survey 

 
  



www.manaraa.com

 

 

44

Table 2.3. Proportion of positive and negative co-interactions  out of the total number of indicator-

attribute relationships investigated to determine indicator representativeness for each ecosystem 

(column; i.e., one indicator-attribute combination across all drivers of change). Positive 

proportions are in the top panel and negative proportions are in the bottom panel. See Table 2.1 

for region acronyms and Table 2.2 for indicator acronyms. Proportions greater than 0.5 are 

highlighted in gray. The sum for a given row/column combination across the panels may not 

always equal one because estimates were only considered positive or negative if their confidence 

interval did not cross zero. 

sign indicator 

region 

AustSE AustSEDE CalCu CAM GOC GoMex Guam Neus NeusDE NOBA 

P
os

iti
ve

 

BS 0.00 0.17 0.29 0.14 0.19 0.24 0.00 0.00 0.00 1.00 

invF 0.95 1.00 0.95 0.86 0.62 0.95 0.00 0.17 1.00 1.00 

IVI 0.62 0.83 0.05 0.00 0.81 0.38 0.94 0.28 0.00 0.17 

LG 0.90 0.33 0.24 1.00 0.76 0.29 0.89 1.00 1.00 1.00 

LS 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 1.00 1.00 

MTI 0.05 0.00 0.05 0.52 0.00 0.81 0.00 0.78 0.00 0.00 

NDES 0.95 1.00 0.95 0.95 0.52 0.95 0.94 0.89 1.00 0.00 

PF 1.00 1.00 1.00 0.95 0.33 0.43 0.00 1.00 1.00 1.00 

SS 0.00 0.00 0.95 0.19 0.76 0.67 0.56 0.00 0.00 0.00 

TB 0.90 0.67 0.81 0.71 0.90 0.86 0.00 0.89 0.00 1.00 

TLc 0.10 0.00 0.00 0.00 0.00 0.81 0.11 0.72 0.17 0.00 

TLs 0.81 0.00 1.00 0.00 0.05 0.33 0.17 1.00 1.00 1.00 

N
eg

at
iv

e 

BS 0.05 0.00 0.00 0.00 0.00 0.76 0.00 0.22 0.00 0.00 

invF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 

IVI 0.05 0.00 0.19 0.57 0.00 0.29 0.00 0.00 0.00 0.00 

LG 0.05 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 

LS 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 

MTI 0.24 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 

NDES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PF 0.00 0.00 0.00 0.00 0.05 0.33 0.00 0.00 0.00 0.00 

SS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TB 0.00 0.00 0.00 0.00 0.00 0.10 0.06 0.00 0.00 0.00 

TLc 0.10 0.00 0.00 0.76 0.00 0.10 0.00 0.00 0.00 0.00 

TLs 0.10 0.33 0.00 0.90 0.10 0.57 0.00 0.00 0.00 0.00 
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2.6 FIGURES 

 

Figure 2.1. Spatial extents and polygon configurations for the eight Atlantis models (see Table 2.1 

for more details). 
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Figure 2.2. Standardized time series of the “total biomass” (TB) in the survey  (y-axis; indicator) 

versus “TB in the ecosystem” (x-axis; attribute) plotted against each other at the same time step 

(upper panel) and with the indicator lagged by one year (lower panel) for the SE Australia 

ecosystem subject to base case (BC) conditions. The lines depict the slope of the co- (dashed) and 

direct-interactions (solid) and they are not intended as a regression on the points. The values in the 

upper right corners are the cross-correlation coefficients of the time series at the plotted lags. 

Autocorrelation of the indicator ( ) and the attribute ( ) are noted in parentheses in the axes 

labels. The points are colored according to their location in the time series with printed time series 

positions in the upper panel as well.   
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Figure 2.3. Same as Figure 2.2, except for the Chesapeake Bay ecosystem.   
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Figure 2.4. Direct- and co-interactions versus self-interactions (top and bottom row, respectively) 

for the attribute (left column) and the indicator (right column). Colors are used to display particular 

attributes and indicators. See Table 2.2 for acronyms. Parameter estimates that were not 

statistically different than zero were excluded and led to the horizontal gaps in the plots.  
igure  
 F 
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Figure 2.5. The median co-interaction across drivers of change  of those that were sensitive versus 

the proportion of indicator-attribute relationships that were sensitive for a given indicator-attribute 

combination out of all investigated combinations for a given ecosystem (colors). The dashed 

horizontal line at zero was included to distinguish between positive and negative interactions. 

Refer to Table 2.1 for region abbreviations and Table 2.2 for acronyms. Attributes are abbreviated 

as follows: net primary productivity (NPP), total biomass (TB), mean TL of the ecosystem 

(TLeco), TB divided by NPP (TB/NPP), and biomass of groups targeted by fisheries (Tar). 
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Chapter 3. JUSTIFYING THE INCLUSION OF HABITAT 

COVARIATES IN SPATIOTEMPORAL 

INDEX STANDARDIZATION 

Abstract 

Estimates of current abundance are a primary need in managing marine fishes and invertebrates? 

Design-based estimators, which make inferences according to the randomness of the sampling 

protocol, have classically been used to provide a relative index of abundance. More recently, the 

use of spatiotemporal models has increased because of their ability to account for spatial 

heterogeneity and improve precision relative to design-based estimators. In theory, the inclusion 

of habitat covariates (e.g., depth) should also improve precision. We used a simulation experiment 

to evaluate the bias and precision of results from spatiotemporal index-standardization models 

when the true process was and was not governed by a habitat covariate. The simulation was 

conditioned on fits to data on darkblotched rockfish (Sebastes crameri) because of their known 

increased preference for deeper water with age and limited migration after recruiting to the fishery. 

In general, indices of abundance were estimated without bias, although parameters themselves 

were not necessarily unbiased. Incorrectly including a covariate when it did not govern the true 

process was less problematic than not including the covariate when it should have been included. 

In general, the Akaike Information Criteria correctly identified model misspecification. Results 

suggest that habitat covariates can improve the precision of abundance estimates. However, depth 

may not be the best variable to adequately capture ecological processes that regulate the 

distribution and abundance of groundfish off the US West Coast.  

3.1 INTRODUCTION 

The successful management of marine fishes and invertebrates depends, at least in part, on 

knowledge of abundance. Catch rates can be used to inform trends in abundance. However, catch 

rates by themselves are seldom proportional to abundance and need to be standardized (Maunder 

and Punt, 2004). Standardization can account for factors such as differences among vessels in 

fishing power (Helser et al., 2004; Robins et al., 1998), the depth or location at which fish are 

caught (Bigelow and Maunder, 2007; Cao et al., 2017), and sampling intensity (Cochran, 1977). 
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The resulting standardized index of abundance can be used directly by management or as input 

when fitting a stock assessment model.  

Abiotic (e.g., depth and sediment type) and biotic (e.g., presence of coral or algae) habitat 

characteristics are fundamental drivers of local abundance. For example, subsurface poleward flow 

defines habitat for Pacific hake (Merluccius productus) in the California Current ecosystem 

(Agostini et al., 2006). Flatfish distributions in the eastern Bering Sea are related to temperature, 

which acts as a proxy for the presence of the cold pool (Kotwicki et al., 2005; Mueter and Litzow, 

2008; Spencer, 2008). Local abundances can vary at seasonal or finer temporal scales because of 

changing habitat conditions. For example, water levels of wetlands offer essential breeding, 

rearing, and feeding grounds for many species and can vary within and between seasons (Johnson 

et al., 2005). Habitats can also vary spatially, and the most complex habitats vary spatially and 

temporally (Hinton and Maunder, 2004). Data collection typically occurs across multiple habitat 

types, and including habitat covariates in index-standardization models is most important when 

covariates explain a substantial portion of variability in catch rates (e.g., distance to rocky outcrop 

for darkblotched rockfish (Sebastes crameri); Shelton et al., 2014). Unfortunately, habitat 

information is not always available for all sampling locations, or even stratifications of the raw 

data, limiting its inclusion in traditional index-standardization models. 

Recently, spatiotemporal models have been used to standardize catch-rate data because of 

their ability to estimate less biased and more precise indices than either design-based or model-

based approaches (Shelton et al., 2014; Thorson et al., 2015a, Thorson and Haltuch, in press). The 

smoothed surface representing spatial variation in catch rates (i.e., densities) assumes that densities 

at nearby sites are more similar than densities farther apart (i.e., spatial autocorrelation). Spatial 

autocorrelation can arise from exogenous or endogenous processes. Exogenous processes typically 

stem from spatial autocorrelation in underlying covariates (Koenig, 1999) and endogenous 

processes stem from life-history characteristics (Levins, 1969). This autocorrelation was 

historically seen as a statistical nuisance, but research is now showing that autocorrelation can 

have strong predictive power regardless of its generating process (Bahn and McGill, 2007; 

Doorman, 2007). For example, a spatiotemporal model applied to bottom trawl survey-data for 28 

groundfish species off the US West Coast generated lower levels of uncertainty compared to a 

model-based approach (Thorson et al., 2015c). Increases in precision are also being seen for 

spatially-explicit age/length composition data (Thorson and Haltuch, in press).  
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Spatiotemporal models can incorporate information on habitat using covariates. However, the 

statistical gains from explicitly including habitat in a model that already accounts for 

spatiotemporal effects has yet to be examined. Here, we used an existing geostatistical index-

standardization model (Thorson and Barnett, 2017) to estimate the effect of depth on the density 

of darkblotched rockfish off the US West Coast. Increasing length with depth suggests that 

biological processes that coincide with depth at least partially regulate distribution in darkblotched 

rockfish and, potentially, their growth (Hamel, 2008). A simulation experiment was conditioned 

using these estimates. The simulation facilitated the exploration of statistical properties of the 

model when the true densities were and were not governed by a habitat covariate (nominally 

termed “depth,” however, the results apply to any habitat covariate). Quantitative descriptions of 

relationships between marine species and habitat covariates such as those presented here provide 

partial explanations for species distributions. Perhaps more importantly, simulation results provide 

inference on when we can best estimate those relationships when the truth is uncertain.  

3.2 METHODS 

3.2.1 Vector-autoregressive spatiotemporal (VAST) model 

Vector-autoregressive spatiotemporal (VAST; Thorson and Barnett, 2017; 

www.github.com/James-Thorson/VAST) models predict variation in density for multiple 

locations ( ) across time ( ). Year-specific indices of abundance can then be calculated by 

weighting estimated densities by the area of the spatial domain. Additionally, the models can 

accommodate multiple categories facilitating the simultaneous analysis of multiple species or age 

classes (see Thorson and Barnett, 2017). For this application, we grouped all ages into a single 

category and fit the model to data for just one species, removing the need to model categories.  

The approach utilized by VAST accommodates observations of zero and is often referred to 

as a delta- or hurdle-model (Martin et al., 2005). The probability distribution for each catch-rate 

data point ( ) is decomposed into two components, the probability of encounter, , , and 

the expected catch rate given the species is encountered, , , at location  and year  of the 

th sample.  

The probability of encounter,  

logit ∑ , , , 	 , , (3.1) 
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was modelled using a linear relationship between , which is the predictor for observation  at 

location  in year , and a year-specific intercept, , and covariates. Habitat covariates, 

, , , can be included as an array of  covariates that explain variation in density for time 

t and location s. The matrix ,  is the estimated impact of covariates. Here, 2 because 

we investigated linear and quadratic terms for the habitat covariate, depth and depth^2. Random 

variability in catchability, ,	among vessel-year combinations ( ) was accounted for using a 

normally distributed random effect with a mean of zero and an estimated variance (σ ). 

Spatial, , and spatiotemporal, , , variation at location  follow spatially 

correlated stochastic processes represented by zero-mean Gaussian random fields that were 

modelled using stochastic partial differential equations (Lindgren et al., 2011). These spatial fields 

facilitate modelling environmental and biological factors that are not directly included in the model 

but affect the density of the modelled species. The expected value, variance, and covariance at a 

set of fixed locations ( 〈 , 〉) were assumed to follow multivariate normal (MN) distributions, 

	~	 0,  and , 	~	 0, σ . The easting and northing for each location 

are represented using  and . Locations in  were determined by applying a k-means clustering 

algorithm to the empirical data. The resulting mesh, computed using the R-INLA software 

(Lindgren and Rue, 2015), was comprised of 250 knots distributed across the spatial domain such 

that their density was proportional to the density of the samples. The spatial ( ) and 

spatiotemporal (σ ) variance in  scale the spatial correlation ( ) given the estimated 

decorrelation distance ( ). Correlation between two locations,  and , was specified using a 

Matérn function, , | | | | , with smoothness (  fixed 

at 1.0 (Lindgren et al., 2011), a Bessel function ( ), and geometric anisotropy. Anisotropy is the 

tendency for correlations to decline faster in one direction than another and was estimated using a 

two-dimensional matrix ( ) with a determinant of 1.0.  

Positive catch rates,  

log	 ∑ , , , , , (3.2) 

were defined similarly to (3.1, except using different subscripts.  

The probability of the data,  

Pr
1 if	 0

; , exp 	 if	 0
,   (3.3) 
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is a combination of the two components using logit and log links, respectively. The Gamma 

distribution, ; , , was used to represent the probability density function evaluated at 

 and with shape parameter  and positive scale parameter  (Cadigan and Myers, 2001). The 

Gamma distribution was parameterized in terms of the expected catch given that the species is 

encountered exp  and the coefficient of variation of measurement errors for positive catches 

( ). 

Parameter estimation was facilitated by maximizing the marginal likelihood of the fixed 

effects (intercepts, decorrelation distances, anisotropy parameters, and residual variation in 

positive catch rates) given the fitted data. The marginal likelihood was approximated using the 

Laplace approximation (Skaug and Fournier, 2006), which approximates the multidimensional 

integral of the joint likelihood (i.e., the product of the probability of random effects, given the 

fixed effects, and the probability of the data, given random and fixed effects), using Template 

Model Builder (Kristensen et al., 2016). To improve computational efficiency, we used the 

stochastic partial differential equation approximation for all spatial and spatiotemporal random 

fields (Lindgren et al., 2011) and a “predictive process” formulation wherein we estimate the value 

of spatial variables at 250 knots. It is assumed that variables are homogenous in the vicinity of 

each knot. A non-linear minimization routine available in the R statistical environment (R Core 

Team, 2018) was used to identify the maximum-likelihood estimate of the fixed effects given the 

gradient of the approximated marginal likelihood with respect to all fixed effects. We confirmed 

that all models had a maximum absolute gradient < 0.0001 and that the Hessian matrix was positive 

definite. Expected values of total relative abundance within a given year were corrected for bias 

to account for the nonlinear transformation of random effects (Thorson and Kristensen, 2016). 

3.2.2 Empirical data 

Darkblotched rockfish are found in the Pacific Ocean from the eastern Bering Sea to Santa 

Catalina Island, California (Figure 3.1; Eschmeyer et al., 1983). Typically, adults rest on mud near 

rocky substrate in waters ranging from 25-550 m depth. Commercial catches began in appreciable 

quantities in the mid-1940s and peaked in 1966 (Wallace and Gertseva, 2018). Prior to the year 

2000, the species was managed as part of a multispecies rockfish complex. The first single-species 

assessment for the darkblotched stock was conducted in 2000 and indicated it was overfished 

(Rogers et al., 2000). Reduced catches, the implementation of Rockfish Conservation Areas, and 
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above average recruitment has since led to its recovered status as of 2017 (Wallace and Gertseva, 

2018). 

Data for darkblotched rockfish were obtained from the Northwest Fisheries Science Center, 

which has supported an annual bottom trawl survey to collect information on the distribution and 

abundance of groundfish since 2003. The survey covers depths from 55 to 1280 m, using standard 

gear and deployment methods aboard contracted fishing vessels (Keller et al., 2012). Data 

provided catch per unit effort for each sampled location. The number of locations sampled per year 

ranged from 494 to 758 (depending if one or two survey passes were conducted). Darkblotched 

rockfish are thought to be adequately sampled in the survey, such that the survey provides 

information used in the stock assessment model on the population trend from 2003 to present. On 

average, darkblotched rockfish were present in 17% of the locations sampled in a given year. 

Two versions of the spatiotemporal index-standardization model were fit to the empirical data. 

The first version ignored habitat covariates and the second included depth as a fixed effect. Depth 

data (NMFS, 2013) were standardized to have a mean of zero and a standard deviation of one prior 

to finding the mean depth for each “knot”. Quadratic functions of depth (i.e., depth^2) were also 

explored to investigate the importance of the covariate at intermediate depths. The knots were kept 

constant for both models and the fitting of simulated data (detailed below). The VAST package in 

R facilitated the estimation of parameters (see Table 3.1 for a list of estimated parameters). 

Marginal Akaike Information Criterion (AIC; Burnham and Anderson, 2002) was used to identify 

the model parameterization that most parsimoniously fit the data based on the marginal log 

likelihood and the number of estimated fixed effects. 

3.2.3 Simulation 

Simulations were used to evaluate the ability of spatiotemporal index-standardization models 

to (1) estimate the sign and magnitude of habitat covariates, (2) estimate spatial and spatiotemporal 

correlation parameters, (3) estimate a relative index of abundance, and (4) identify when the true 

process was and was not governed by a habitat covariate using standard model-selection 

techniques. One hundred simulated data sets were generated for each true state (i.e., with and 

without a habitat covariate) based on parameters that were estimated by fitting each estimation 

model to the empirical data (Table 3.1). Specifically, the simulated data sets were conditioned 

using estimated variance parameters, estimated depth effect (only when simulating data that 
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included a depth effect), and annual intercepts that had the same mean and standard deviation as 

the estimated set. One hundred data sets were included per scenario to ensure that the median 

parameter estimates across replicates were stable and that additional replicates did not alter 

estimation performance (Figure C.1). These two hundred data sets were fit to both estimation 

models leading to 400 estimated parameter sets. Each simulated data set had the same annual 

sample size and utilized the same sampling locations as the empirical data,  

The overall design was factorial, where the true process generated by the operating model was 

and was not governed by depth and the estimation process did and did not include depth. The 

combination resulted in two misspecified and two correctly specified combinations of simulated 

data and estimation method. The operating model differed from the estimation method in that it 

utilized a delta-lognormal process (N~Bernoulli ; if N=0 then 0 and if N=1 then 

lognormal log , ) to generate simulated data ( ) rather than a delta-gamma process, 

thus ensuring that the estimation method could not fit the data perfectly.  

Estimation performance was quantified using median absolute error ( ), where 

 and  are the estimated and true values from the operating model used to generate the data, 

respectively. Bias in the trend of the index was assessed in two ways. In the first method, the 

difference was computed between the estimated log ratio of the first and last year and the true log 

ratio the first and last year. In the second method, log-linear models of the index, log , 	

log , , , with a normal error structure ( , ~ 0, ) were used to compute bias, where 

 will equal one if the estimated index ( , ) from replicate  in year  reflects changes in the true 

index ( , ). Hyperstable models will lead to 1 and the opposite will be true for hypersensitive 

models (Wilberg et al., 2010). Estimates of one imply that the index is well calibrated. Coverage 

of the true index was assessed using 95% confidence intervals. The confidence interval is expected 

to include the true value 95% of the time. The best model, of the two investigated, was chosen 

using AIC (Burnham and Anderson, 2002). Differences in AIC of four correspond to an evidence 

ratio of 7.4 or an 88% chance that one model is better than the other, using a Bayesian interpretation 

of the likelihood and certain priors (Burnham et al., 2011).  
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3.3 RESULTS 

3.3.1 Fits to empirical data on darkblotched rockfish 

The catch-rate data provided more support for a model that included depth over a model that 

lacked a habitat covariate for darkblotched rockfish off the US West Coast (ΔAIC=74.77). Both 

effects of depth in the catch-rate model were negative, suggesting a dome-shaped relationship as 

expected rather than an asymptotic one (Table 3.1). The effect of depth in the catch-rate model 

predicted a rate of change of -1.04 when depth is zero and a steepness/curvature of -0.64. This 

negative rate of change was stronger than that estimated for thirteen of fourteen other US West 

Coast groundfish species (results not shown). A stronger effect was estimated for longspine 

thornyhead (Sebastolobus altivelis).  

The estimated trends in abundance indices were not greatly affected by the inclusion of depth. 

One effect of including depth was a reduction in the range of the confidence intervals (blue versus 

red in Figure 3.2). Another effect was decreased correlation of the residuals perpendicular to the 

coast (i.e., increases in  and changes to ; Table 3.1) for encounters and positive catch rates 

(Figure C.2). Including depth did not change the pattern in the residuals parallel to the coast for 

positive catch rates or change the ability of the estimation method to capture the overall shape of 

the dispersion in the positive catch-rate data (Figure C.3). Differences in the estimated indices 

were largely a result of differences in the estimated ranges and yearly intercepts because the 

changes in the random spatial and spatiotemporal effects were not large relative the estimated 

standard errors. 

The empirical data supported the inclusion of quadratic depth effects. The addition of the two 

depth-squared terms decreased the AIC by 14.39 units relative to a model with only linear depth 

terms. Parameters not related to depth were relatively consistent between the linear and quadratic 

models and the resulting index was similar (Figure C.4). Both linear depth terms changed when 

depth-squared terms were included even though the independent variable was centered (Table 3.1). 

Centering was performed to reduce the correlation between the linear and quadratic terms. 

Correlations between linear and quadratic terms were common across other species as well (results 

not shown).  

Increasing the number of knots increased the magnitude of most of the linear and quadratic 

depth effects (Table 3.1). Appropriately, it also decreased the range parameters that govern the 
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distance at which spatial correlation becomes negligible. It is unclear how to perform model 

selection between models that use a different number of spatial knots. However, the data supported 

the inclusion of linear and quadratic depth effects relative to a model without depth 

(ΔAIC=555.12) when 500 knots were used. In this case, the trend of the index between the two 

models was almost identical, but the variance was smaller for the quadratic-depth model (results 

not shown). An increase in the number of knots did not always lead to a greater disparity between 

estimation methods with and without depth (results not shown).  

3.3.2 Simulation results 

Simulation results suggest that covariates affecting catch rates of marine fishes can be 

estimated using spatiotemporal models. Linear covariates related to habitat were estimated without 

bias for the positive catch rate model and tended to be positively biased for the encounter model 

component (points should be centred on the crosshairs in Figure 3.3). The squared effects of depth 

were biased towards zero (Figure 3.4). The bias was not removed when the simulated effect was 

modelled using 500 knots (Figure C.5). The estimated effect of depth was small, if not zero, when 

the true effect was zero for both linear and quadratic effects. Parameters became biased when there 

was a mismatch between the operating model that included depth and the estimation method that 

did not include a depth parameter.    

The trend in the derived index of abundance as reflected by the difference between first and 

last values (on the log scale) was unbiased (Figure 3.5). Model misspecification did not lead to an 

increase in bias as might be expected. Instead, the model compensated for the misspecification by 

increasing the standard deviation of the spatial field of the encounter model (Figure 3.6). The bias 

in the range parameter of the encounter model increased when the model was misspecified and 

appears to be correlated with the bias in the standard deviation of the spatial field for encounters.  

Indices of abundance from the spatiotemporal model were neither hyperstable nor 

hypersensitive (i.e., 1). Stability was similar for all investigated models regardless of how the 

operating model was defined or if the estimation method was misspecified. Examples of estimated 

trajectories are provided in the supplementary material showing the similarity in the outcomes of 

the estimation methods despite the model misspecification (Figure C.6).  
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3.4 DISCUSSION 

Simulations were used to infer the costs and benefits of adding a habitat covariate to 

spatiotemporal index-standardization models that account for complex correlations in spatial 

structures. Previous work (e.g., Cao et al., 2017; Thorson, 2017) predicted that their inclusion 

would result in better capture of the mean response by removing nonstationarity without explicitly 

including nonstationary Gaussian random fields (Fuglstad et al., 2015). Results confirmed that 

habitat covariates can help explain spatial variation in catch rates and may decrease the variance 

of the derived index (see Figure 3.2). However, including a habitat covariate did not significantly 

decrease the variation in the spatial or spatiotemporal fields, even when AIC supported the 

additional parameters (results not shown).  

The main goal in standardizing data is to provide a relative index of abundance. In doing so, 

analysts hope to remove the variation in the data that is not attributable to changes in the true 

population size. It was unclear prior to conducting this simulation experiment if the modelling 

framework could discern habitat effects from residual spatial variation. Simulations indicated that 

habitat covariates should be included and that their inclusion is particularly useful when the true 

variance of the spatial field is small. For the case study, depth explained longitudinal variation in 

darkblotched rockfish encounters and positive catch rates and led to slightly reduced standard 

errors of the derived index of abundance. We only tested a single covariate and leave it to future 

work to investigate multiple habitat covariates. Investigating multiple covariates could be 

complicated given that such covariates tend to be correlated and spatially autocorrelated 

themselves. Nevertheless, incorrectly including depth in the model when only one covariate was 

included in the operating model used to simulate data did not lead to bias in the derived index of 

abundance. A result that could change if the sampling scheme was not random with respect to the 

habitat covariate. 

The presence of resources within a habitat is theorized to directly relate to abundance (i.e., 

ecological-niche theory; Hutchinson, 1957), but the exact mechanism regulating darkblotched 

rockfish distribution with depth remains unknown. Here, depth was included as a proxy for 

unmeasured habitat characteristics (e.g., vertical current, primary production, diel migration, 

community composition, etc.) that relate to ecological process affecting density, such as benthic-

pelagic coupling (Giraldo et al., 2017; Woodland and Secor, 2013). The relationships observed 
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between catch rates and depth could be the result of spatial distributions in prey. However, 

darkblotched rockfish can be opportunistic predators with the ability to engage in vertical, diel 

migrations to feed on the bottom during non-daylight hours (Hannah et al., 2005). Alternatively, 

previous research has shown that older, mature individuals typically inhabit deeper waters (Hamel, 

2008) and the negative relationship may reflect the age distribution of the population (Wallace and 

Gertseva, 2018). Future empirical work should investigate relationships between depth and age-

specific indices of abundance (e.g., Kristensen et al., 2014; Thorson and Haltuch, in press). We 

also noticed differences in the sign of estimated depth covariates with changes in the number of 

knots used in the analysis (results not shown). 

It is possible that depth does not have major ecological significance and the model instead 

may be capturing other sources of variability in catch rates. The likelihood of the previous being 

true was a legitimate concern for the case study because of the large scale of the analysis. Estimated 

ranges (i.e., distance at which spatial correlation decreased to ~ 10%) were smaller when depth 

was included as a covariate than when it was not included. These ranges were larger than those 

estimated from a similar model applied to species with limited dispersal (e.g., Lecomte et al., 2013) 

but smaller than the average dispersal distance of the species (Hamel, 2008). Larger true ranges 

resulted in less bias in misspecified models than when the true range was based on fits to the 

empirical data (results not shown), implying that including habitat covariates may be increasingly 

important for more sedentary species. Alternatively, it could be that the range parameter is not well 

estimated and would benefit from additional sampling to increase the number of data points that 

inform each knot or such that more knots can be modelled (Fuglstad et al., 2018). More knots 

would decrease the feasibility of running the model, which already push the boundaries of 

available memory on standard desktop computers. Future work should investigate the benefit of 

decreasing the bias in the range parameter versus adding habitat covariates, particularly as the 

variance of the habitat data increases with respect to a given knot or how to summarize multiple 

measures of covariates per knot, where currently the mean is used.  

The structure of spatiotemporal index-standardization models allows for flexibility in several 

ways. For example, other distributions can be used for positive catch rates, such as the lognormal 

distribution. Here, the gamma distribution was used because of greater efficiency relative to the 

lognormal distribution, which is known to be sensitive to deviations from lognormality (Syrjala, 

2000) and misspecification (Firth, 1988). Zero-inflated negative binomial (e.g., Brodziak and 
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Walsh, 2013) and compound Poisson-gamma distributions (e.g., Lecomte et al., 2013; Thorson, 

2017) could also be explored. The former accommodates more zeros than expected under a 

negative binomial distribution and the latter mimics the process of capturing clusters of biomass. 

Choices regarding distributional assumptions typically involve hypotheses about the mean-

variance relationship of the data, which we assume to be consistent, and inertia, which in fisheries 

research tends to favor delta-models (Steffanson, 1996). Nevertheless, the use of the delta-gamma 

model limited the analysis in terms of comparing the estimated parameters across the two 

components of the model because the logit-link used to model encounters requires the explanation 

of the expectation in terms of odds ratios compared to percent change as for positive catch rate 

model. This limitation becomes increasingly important when the signs of the effects are 

inconsistent across model components (e.g., Rubec et al. (2016) that showed depth was positively 

and negatively related to the occupancy and catch-rate models, respectively, for pink shrimp, 

Farfantepenaeus duorarum). The compound Poisson-gamma and Poisson-link models eliminate 

this problem by using a single model to both account for the probability of encounter and the 

number observed (Thorson, 2017). Thus, shared inference with respect to relationships between 

the habitat covariate and encounters and positive counts would result from the use of a single 

parameter. In contrast, under the delta-model shared inference across the model components is 

only possible using an additional covariance matrix, further decreasing parsimony (e.g., Thorson 

and Ward, 2013). The compound Poisson-gamma model is more efficient compared to the 

Poisson-link model, but limitations in its computational feasibility have yet to allow for its use in 

spatiotemporal models (Thorson, 2017). 

In general, simpler models are often preferred over highly parameterized models for 

management purposes because they are easier to explain (Ludwig and Walters, 1985) and better 

at predicting. Nevertheless, simple linear or quadratic relationships may result in poor 

approximations of the impact of habitat on density (Harris, 2015). Bias is expected to decrease 

with increasing model complexity, however, often at the expense of increased imprecision 

(Burnham and Anderson, 2002). The tradeoffs in assuming simple versus complex relationships 

between habitat covariates and density in spatiotemporal index-standardization models has yet to 

be formally investigated. However, Shelton et al. (2014) suggest that the inclusion of an additional 

spatiotemporal effect can accommodate remaining nonlinear and unmeasured habitat associations. 

Therefore, if the primary covariate that governs species density does so in a nonlinear manner 
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(Sadykova et al., 2017), it may be best to investigate other weaker but linear relationships. Future 

studies should investigate methods used to generate the squared covariate data to decrease 

correlation between the two terms. We investigated depth because it is commonly available for 

most species from bathymetric charts or survey tows. Other commonly-used proxies for ecological 

processes include temperature as a proxy for the availability of thermoregulated prey (e.g., 

Maravelias and Reid, 1997), thermocline depth-to-bottom-depth ratio as a proxy for water column 

production (e.g., Rooper and Martin, 2011), and presence of chlorophyll a as a proxy for 

phytoplankton biomass and oceanic productivity (e.g., Heenan et al., 2016).  
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3.5 TABLES 

Table 3.1. Parameter names and their corresponding symbols used in the spatiotemporal index-

standardization model. Four versions of the model were fit to the empirical data for darkblotched 

rockfish. Estimates (est.) of fixed and random effects are given for each version. Models increase 

in complexity from left to right, no depth, linear depth terms, linear and squared depth terms, and 

linear and squared depth terms estimated for 500 knots. Standard errors are provided in 

parentheses. Standard errors are approximate for models with degenerate random effects. 

Variances of spatial and spatiotemporal fields are reported as standard deviations (SD).

 Name Symbol Dimension Est. (se) Est. linear 
(se) 

Est. 
quadratic 
(se) 

Est. quadratic 
500 knots (se) 

Sample       
Location  250 or 500     
Year (2003-2015)  13      
Catch data for survey sample        
Measured covariates for sample        
Fixed effects in   13x1     
Fixed effects in   13x1     
SD of random spatial effects affecting    4.45 (0.66) 3.64 (0.52) 3.65 (0.56) 3.35 (0.43) 
SD of random spatiotemporal effects 
affecting  

  0.16 (0.21) 0.00 (0.34) 0.00 (0.57) 0.11 (0.29) 

SD of random spatial effects affecting    1.71 (0.19) 1.77 (0.33) 1.71 (0.32) 1.23 (0.17) 
SD of random spatiotemporal effects 
affecting  

  1.31 (0.09) 1.87 (0.30) 1.85 (0.30) 1.56 (0.17) 

Random spatial effects affecting        
Random spatiotemporal effects 
affecting  

,       

Random spatial effects affecting        
Random spatiotemporal effects 
affecting  

,       

Depth effect for  ,   NA 1.70 (0.36) 2.11 (0.41) 2.22 (0.31) 
Depth effect for  ,   NA -1.45 (0.17) -1.04 (0.31) -0.75 (0.25) 
Depth squared effect for  ,   NA NA -1.62 (0.41) -1.72 (0.35) 
Depth squared effect for  ,   NA NA -0.64 (0.42) -1.24 (0.30) 
Anisotropy  2x2     
Spatial scale in    0.02 (0.18) 0.03 (0.21) 0.03 (0.22) 0.03 (0.18) 
Spatial scale in    0.07 (0.24) 0.24 (0.28) 0.24 (0.29) 0.26 (0.19) 
Dispersion in the probability density 
function of positive catch rates 

  1.26 (0.03) 1.25 (0.02) 1.25 (0.02) 1.18 (0.03) 

SD vessel year effect affecting  σ   0.00 (0.88) 0.00 (0.08) 0.00 (0.09) 0.00 (0.36) 
SD vessel year effect affecting  σ   0.33 (0.07) 0.27 (0.07) 0.27 (0.07) 0.24 (0.07) 
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3.6 FIGURES 

 

 
Figure 3.1. Map of darkblotched rockfish (Sebastes crameri) catches (kg) collected by the 

Northwest Fisheries Science Center during the groundfish bottom trawl survey. Coordinates are in 

decimal degrees.  
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Figure 3.2. Comparison of derived indices of abundance (mt) in log space for darkblotched 

rockfish from 2003 to 2015. Data were fit to two estimation methods (EMs), one that included 

linear and quadratic depth terms (red) and one that did not include depth (blue). Polygons show 

the 95% confidence intervals for each model, which are purple when they overlap. 
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Figure 3.3. Linear effects of depth as estimated by each component of the delta-model (encounters 

on x-axis and positive catch rate on y-axis). Each point is a replicate of an estimation method fitted 

to simulated data that was (top row; “depth”) and was not (bottom row; “nodepth”) governed by 

depth. The median absolute error (MAE; median|estimated – true; printed near axis|) was smaller 

when the data were governed by depth. Unbiased results are located on the red cross-hairs.  
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Figure 3.4. Simulation results illustrating bias in estimates of squared effect of depth for each 

model component (encounters on x-axis and positive catch rate on y-axis). Each point is a replicate 

of an estimation method fitted to simulated data that was (top row; “depth”) and was not (bottom 

row; “nodepth”) governed by depth. The median absolute error (MAE; median|estimated – true|) 

for each parameter is printed near its respective axis. Unbiased results are located on the red cross-

hairs.   
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Figure 3.5. Boxplots of the error in the log ratio of the first and last years of the index of abundance. 

Panels define the presence of quadratic effect of depth in the operating model (rows) and if depth 

was included in the estimation method (EM; column).  The red line indicates the location of 

unbiased estimates. Whiskers depict 1.5 times the first and third quartiles and outliers are 

represented using points.   
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Figure 3.6. Estimates of the variance of the spatial field for encounters versus the range of the 

spatial and spatiotemporal fields for the encounter model. Linear and quadratic depth terms were 

included in the operating model used to simulate the data in the bottom row. Linear and quadratic 

depth terms were included in the estimation method in the right column. Thus, the estimation 

methods in the bottom-left and the top-right panels are misspecified. The median absolute error 

(MAE; median|estimated – true|) for each parameter is printed near its respective axis. Unbiased 

results would be located on the red cross-hairs. 
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Chapter 4. FACTORS DRIVING CHANGES IN FISHING 

GEAR IN THE US WEST COAST 

SABLEFISH FISHERY 

Abstract 
Reducing catch of non-target individuals and species (i.e., bycatch) remains a global priority of 

fisheries managers and an impediment to achieving sustainable fisheries. Switching to fishing gear 

with a lower rate of bycatch is often identified as a feasible method to reduce bycatch. However, 

fishers face many decisions, and it is often difficult to predict under what circumstances they will 

switch gear types when the management framework allows it. Allowances for changes from trawl 

to fixed gear in the US West Coast groundfish fishery were implemented in 2011 for fishers 

holding a Limited Entry trawl permit. Thus, it was expected that the proportion of sablefish 

(Anoplopoma fimbria) landings caught using fixed gear versus trawl gear would increase starting 

in 2011. Cluster analysis identified two years (1991 and 2005) since 1982 with major changes in 

gear types used to land sablefish. Changes in the proportion of landings caught using fixed gear 

versus trawl gear within the limited entry trawl fishery since 2011 were best explained by port of 

landing and not vessel characteristics or the relative abundance of bycatch species. Future work 

could explore the importance of local governance structures, such as membership in and/or rules 

of risk pools, to understand shifts in fishing gear pending the collection of such information. The 

results highlight difficulties of integrating data across multiple disciplines and the importance of 

doing so when analysing human choices.  

4.1 INTRODUCTION 

The management of natural resources occurs in complex socio-ecological systems (SESs) that 

are characterized by multiple connections and feedbacks (Ostrom, 2009). Large scale controlled, 

replicated experiments are nearly impossible within these complex systems (Jensen et al., 2012), 

as is the complete elimination of uncertainty. Therefore, understanding uncertainty and 
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incorporating it into management frameworks is necessary for the development of a 

comprehensive and sustainable approach to the management of natural resources.  

There are three broad categories of uncertainty that are relevant to manager in charge of 

natural resources, environmental, scientific, and implementation uncertainty (Mehta et al., 1999). 

Environmental uncertainty refers to the variability of ecosystem processes. Scientific uncertainty 

arises from imperfect sampling and the need to simplify ecosystems into tractable models that will 

almost always lead to model misspecification. Lastly, implementation uncertainty refers to the 

inability to predict how users will respond to policies or regulations. Each type of uncertainty can 

act to undermine the effectiveness of a management framework. Implementation uncertainty has 

received far less attention than environmental and scientific uncertainty (Fulton et al., 2011). 

Adequately characterizing implementation uncertainty in the management of marine fishes relies 

on honing our ability to predict fishers’ responses to management frameworks. Informing 

predictions of fisher response can be accomplished by reviewing past fisher behavior under similar 

management frameworks or using logic to predict what fishers might do under a new management 

framework. Here, we review the behavior of fishers within a complex SES to inform future 

incentive-based management strategies.  

Fisher behavior is the result of both long- and short-term decisions, which are highly 

contextual (Hart and Pitcher, 1998; Hunt, 2005). For example, long-term decisions can relate to 

capital investments such as purchasing a new vessel, whereas short-term decisions can pertain to 

a fishing trip such as whether or not to go fishing. Decisions are often shaped by what is allowed 

within the management framework and knowledge gained through experience or from others’ 

experiences. Experiences can include factors such as environmental conditions, risk tolerance, 

costs of fishing, and past catch rates (Steelman and Wallace, 2001; van Putten et al., 2012). 

Furthermore, decisions involve assessing trade-offs among multiple personal objectives, 

uncertainty in the information used to guide choices, and the actions of others (Allen and McGlade, 

1987). Therefore, fisher behavior will be driven by much more than just rational economic 

objectives (e.g., profit maximization). Consequently, management frameworks that fail to account 

for the complex socioeconomic and cultural contexts of fisher decision-making processes may fail 

to achieve their objectives (Hilborn, 1985; Mahon et al., 2008). 

Insights on fisher behavior are often deduced from information meant to inform fisheries 

scientists about landings and effort. These data are typically available for commercial fisheries but 
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subject to varying levels of uncertainty. This indirect inference is needed because direct methods, 

such as interviewing fishers, often require an unreasonable amount of time and costs. Furthermore, 

the theory of reasoned actions proposes that an individual’s attitudes cannot alone be used as a 

direct predictor of their behavior because intention may or may not result in a specified behavior 

(Ajzen, 1991). Few studies, at least with respect to large-scale commercial fisheries, rely on 

interviews to inform research on fisher behavior, but see Holland and Sutinen (1999), St. Martin 

and Hall-Arber (2008), and Andersen et al. (2012) for exceptions.  

Identifying factors that affect fisher behavior, from any type of data, is challenging. 

Relationships are often non-linear and constantly evolving across space and time (Holling et al., 

1998). For example, purse-seine fishers in the Peruvian anchovy (Engraulis ringens) fishery use 

information from acoustic systems to adapt their travel and search durations based on the perceived 

spatial extent of the stock. Acoustic devices have improved over time leading to better predictions, 

but predictions also depend on environmental conditions which can vary on short time scales 

(Bertrand et al., 2004). Formal and informal rules can also affect behavior, and the removal of any 

particular rule may affect the interactions of those that remain (Cox, 2011).  

Finding a combination of rules that leads to the achievement of the desired objectives is 

challenging. Traditionally, commercial fisheries have been regulated through the combined use of 

input and output control rules. Input measures, such as limiting the number or size of fishing 

vessels, can increase the cost of fishing and frequently lead to unintended consequences (Holland 

et al., 2010). Output control measures, such as total allowable catches (TACs), incentivize 

competition among fishers as they “race-to-fish.” Conversely, incentive-based measures have been 

found to increase the likelihood of reaching multiple objectives desired by management and fishers 

(Hilborn et al., 2005; Grafton et al., 2006). For example, providing extra days at sea to fishers who 

switch to a gear with lower catch rates of non-target species (i.e., bycatch) can lead to decreased 

discards and longer seasons. Additionally, individual transferable quotas (ITQs) can reduce the 

need for input control measures while still achieving management goals (Branch, 2009). Low 

TACs for overfished species allocated to individual fishers may limit the overall catch without 

directly specifying how fishers stay within their limits (Casey, 1995; Hall et al., 2000; Holland 

and Jannot, 2012). Unfortunately, it is difficult to predict how fishers will change their behavior 

once they have the enhanced security of owning their own share of the TAC. Furthermore, ITQs 
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may need to be modified once in place to ensure that management goals are being met and that the 

system is fair and socially acceptable for everyone involved (Branch et al., 2006). 

Much research exists on the effects of ITQ systems in general and for several case studies. 

The combined effects of ITQ systems and the relaxation of input control measures are less studied. 

Here, we use the US West Coast groundfish fishery as a case study to investigate drivers of fisher 

behavior regarding gear choice in an ITQ fishery that allows fishers to choose among gear types. 

Fishers target several species within this fishery, but we focus on those targeting sablefish 

(Anoplopoma fimbria) because it is the species within the fishery most frequently caught by non-

trawl (i.e., fixed) gear and the most valuable species, by far. The objectives of this study, therefore, 

are to (1) identify and contextualize major changes in gear types used to land sablefish since the 

start of the fishery and (2) quantify drivers of changes in behavior for fishers engaged in gear 

switching since the implementation of the ITQ system. 

4.2 METHODS 

4.2.1 Overview 

Two methods were used to understand the behavior of fishers targeting sablefish in the US 

West Coast groundfish fishery. First, cluster analyses were used to identify temporal shifts in gear 

choices. Second, generalized linear models (GLMs) were used to identify drivers of gear choice. 

Data used to fit the models included information on ecological, economic, and social aspects of 

the fishery, collected from both fishery-dependent and -independent sources. Analyses and steps 

required to merge the data that were provided by several groups to a useable format are detailed 

below, or in associated appendices. 

4.2.2 US West Coast groundfish fishery 

The US West Coast groundfish fishery is a federally managed fishery that operates between 

the US-Canada and the US-Mexico borders (Figure 4.1). Commercial harvests occur within four 

main sectors. The Limited Entry (LE) sector is composed of two sub-sectors, the LE trawl and LE 

fixed-gear sectors. The open-access sector consists of fishers who have a history of fishing but do 

not hold a LE permit. Tribal fishers off the coast of Washington and recreational fishers fishing 

along the entire coast comprise the last two sectors. All sectors are subject to annual catch limits 
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and area- and gear-specific restrictions. Major changes occurred in the fishery in 2011 when an 

ITQ system for the shore-based Pacific whiting (Pacific hake, Merluccius productus) and non-

Pacific whiting sectors was implemented, a co-op provision for the at-sea Pacific whiting sector 

was established, discarding was no longer allowed, observer coverage increased from 20% to 

100%, and an allowance for the harvesting of trawl ITQ using any gear that is legal within the 

fishery was implemented (PFMC, 2010). Prior to 2011, the fishery was managed using trip limits 

that did not include discards. 

The fishery includes 90+ species and primarily targets demersal species such as sablefish, 

Dover sole (Microstomus pacificus), shortspine thornyhead (Sebastolobus alascanus), Petrale sole 

(Eopsetta jordani), and Pacific whiting (PFMC, 2016). Targeting occurs partially through spatial 

choices in fishing location to capitalize on species-specific habitat preferences (Branch et al., 2005; 

Jannot and Holland, 2013). Fishers encounter several bycatch species including Pacific halibut 

(Hippoglossus stenolepis), an internationally-managed species, bocaccio rockfish (S. paucispinis), 

cowcod rockfish (S. levis), darkblotched rockfish (S. crameri), Pacific ocean perch (S. alutus), and 

yelloweye rockfish (S. ruberrimus). These species other than Pacific halibut include the majority 

of those declared overfished and under rebuilding plans since 2004 (PFMC, 2003). As of 

December 2017, only cowcod rockfish and yelloweye rockfish remain under rebuilding plans.  

Sablefish is one of the most valuable species within the fishery with 2015 gross revenue of 

$28.7 million (NMFS, 2017). Ex-vessel prices peaked in 2011 at $6.99 / kg and have since declined 

to the mid-$5 / kg range. Catches from trawl gear generally fetch a lower ex-vessel price than those 

caught using fixed gear, and 27% of the 1,010 mt landed in 2011 was landed using fixed gear. 

Trawlers landing sablefish are typically targeting dover sole, longspine thornyhead (S. altivelis) 

and shortspine thornyhead along with sablefish. Conversely, almost all vessels using fixed gear 

are primarily targeting sablefish. 

4.2.3 Transition years among dominant gear types 

Historical landings were used to highlight temporal changes in the dominant gear type used 

to land sablefish. Long time series of sablefish landings were available because sablefish have 

consistently been identified to the species level since 1908 and gear-specific reconstructions 

extend the time series to 1900 (Johnson et al., 2015). Landings were defined as fish brought to 
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shore, and landings plus discards equal catches. Landings by gear (line, pot/trap, and trawl gear) 

and sector were available since 2002 (PacFIN, 2016). 

Transitions were investigated since 1982, the first year of federal management, using 

hierarchical clustering, Nonmetric Multidimensional Scaling, and Simpson Indexes of Diversity. 

Hierarchical clustering was performed on Bray-Curtis measures of distance between proportions 

of landings caught using each gear type out of the total yearly landings (Oksanen et al., 2015). 

Year-specific proportions were used to emphasize differences in gear rather than absolute yearly 

differences that could be affected by annual catch limits. Differences of one indicate complete 

dissimilarity and differences of zero occur when proportions are equal between years. Clusters 

were defined using nearest neighbour-chain algorithms, which minimize variance using a 

“complete bottom up”, or agglomerative, criterion. Average silhouette width provided a measure 

of cluster validity by measuring the degree of membership of an object to its cluster (Rousseeuw, 

1987; Maechlet et al., 2014). Degree of membership was calculated as the difference between the 

average distance between the given object and all objects of the cluster to which it belongs and the 

same measure computed for the next closest cluster. Two-dimensional Nonmetric 

Multidimensional Scaling (Oksanen et al., 2015) provided a way to visualize dominate gear types 

across years. The Simpson Index of Diversity measurements highlighted years with relatively 

equal proportions by gear type (Oksanen et al., 2015). A literature review of PFMC documents, 

non-governmental organization reports, and peer-reviewed literature was performed to provide 

context to identified transitions.   

4.2.4 Drivers of fisher behavior 

Investigated social and ecological drivers of fisher behavior within the LE trawl sector were 

chosen using Ostrom’s (2009) framework for SESs. The framework facilitates the integration of 

data from multiple disciplines such that variables are sought from all influential aspects of the SES. 

Information on the resource unit, the resource system, and the governance system was sought to 

explain the behavior of resource users (McGinnis and Ostrom, 2014). 

The dependent variable (“fixed landings”) was the year- and port-group-specific proportion 

of sablefish landings within the LE trawl sector landed using fixed gear (PacFIN, 2016; 

www.psmfc.org/pacfin). Fixed-gear landings are assumed to represent the degree to which fishers 

within the sector chose to use fixed gear rather than trawl gear to land sablefish. Proportions were 
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calculated for each port group from 2011-2015 (Appendix C). Port-specific landings were assigned 

to port groups (Washington, Astoria and Tillamook, Newport, Coos Bay, Brookings and Crescent 

City, Eureka, Fort Bragg, San Francisco and Bodega Bay, and Monterey and Morro Bay) based 

on spatial proximity and civil boundaries (PFMC, 2004). 

Generalized linear models were used to quantify the power of each independent variable to 

explain variability in fixed landings (Table 4.1). Multiple variables related to fishers (i.e., resources 

users) were available from NOAA’s Economic Data Collection Program. Information on sablefish 

(i.e., resource unit) was available from the Northwest Fisheries Science Center (NWFSC) Shelf-

Slope survey. The survey also provided information about other species inhabiting the California 

Current Large Marine Ecosystem (i.e., resource system). Information regarding the governance 

system was unavailable (see below).  

The Economic Data Collection Program has been a mandatory component of the US West 

Coast groundfish fishery since 2009. The program collects social-ecological data, such as annual 

expenses and vessel characteristics, on fishers within the LE trawl sector. Information is collected 

directly from owners and operators who must certify, under penalty of perjury, that all information 

is true and complete to the best of their knowledge (USOFR 2014c). Year-specific information 

from each participating vessel was assigned to the port group for which that vessel had the highest 

ex-vessel revenue in that year. Yearly, port group-specific sums or means were provided for 

average daily fuel use (gal∙day-1); average fixed costs (USD), which included expenses for 

processing equipment, vessel equipment, insurance premiums, and moorage; average variable 

costs (USD), which included expenses for bait, captain salary, communications, crew salary, 

association dues, food, freight, fuel and lubrication, ice, licenses, observers, offloading, supplies, 

travel, and trucking; number of fish buyers; average crew size, excluding the captain; total number 

of vessels delivering to the port group; average horsepower of main engine (hp); average fuel 

capacity (gal); average towing speed while trawling (kn); and average vessel length (m).  

The availability of sablefish to fishers delivering landings to each port group was 

characterized using year-specific estimates of local abundance. Estimates were derived using 

spatiotemporal delta-models (Thorson and Barnett, 2017) that separately estimate the probability 

that a geo-referenced sample will encounter the species and the expected catch rate given that the 

species is encountered (Maunder and Punt, 2004). Models were used rather than mean or stratified-

mean abundance to account for sampling design and fish behavior (Thorson and Ward, 2013). 
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Spatiotemporal models were fit to relative biomass data on sablefish collected annually from 2003 

to 2015 during the scientific survey for groundfish and invertebrates off the US West Coast 

(Bradburn et al., 2011). Models provided a local index of abundance for each port group assuming 

that fishers on average travel no more than 200 nm north or south of the main port (see 3.2.1). 

We assumed that fishers targeting sablefish attempt to avoid catching species managed under 

rebuilding plans because of the limited quota available and rules prohibiting discarding. Year-

specific estimates of relative local abundance were derived for canary rockfish, darkblotched 

rockfish, and Pacific ocean perch in the same manner as was done for sablefish. Each of these 

species were managed under a rebuilding plan in 2011.  

Information on local abundance was also sought for bocaccio rockfish, cowcod, widow 

rockfish, and yelloweye rockfish, additional species managed under rebuilding plans in 2011. 

Unfortunately, the survey had an insufficient number of positive tows per year to be informative 

on a coast-wide level for estimating local indices for these species (Taylor and Wetzel, 2011). 

Future work could investigate ways of estimating the local abundance using additional surveys 

such as the hook-and-line survey also operated by the Northwest Fisheries Science Center (Harms 

et al., 2010). Fortunately, bycatch of cowcod has been low since 2002 after the implementation of 

Rockfish Conservation Areas (NMFS, 2004) and bycatch of bocaccio rockfish is small relative to 

some of the other species managed under a rebuilding plan. Thus, not including them as potential 

drivers of behavior in the model was not seen as an issue. However, bycatch of yelloweye and 

canary rockfish is possible when trawling or fishing with longlines (Jenkins and Garisson, 2013). 

The dependent variable was regressed against potential independent variables using GLMs 

under the assumption that the errors were beta distributed. The beta distribution (see Appendix C 

for more details) was used because measures of the proportion of the landings of sablefish by fixed 

gear were non-integer values bound between zero and one (Smithson and Verkuilen, 2006; Schmid 

et al., 2013). The model, 	 	 	 	 , was initialized to 

only depend on port group. Additional variables were added using forward step-wise model 

selection. Continuous fixed effects were transformed, / ), to have a mean of 

zero and a standard deviation of one. Standardization changed the range of all variables to 

approximately [-3,3] and facilitated the inclusion of variables measured in different units. 

Standardization was performed across port groups and years (i.e., transformations occurred after 

data were summarized to port groups).  
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Models were assessed for their convergence using standard residual plots. The best model was 

chosen using the Akaike information criterion (AIC; Burnham and Anderson, 2002). 

4.3 RESULTS 

4.3.1 Dominant transitions 

Documented landings of sablefish caught along the US West Coast date back to 1908 (Figure 

4.2 upper panel; Johnson et al., 2015). Historically, sablefish were mainly landed using line gear 

and the use of pots/traps started increasing in 1960. Pots/traps were mainly fished by foreign fleets. 

Landings from trawl gear began increasing in the late 1960s, but trawl landings did not 

proportionally exceed those caught by pots/traps until the late 1980s (lower panel in Figure 4.2).  

Clustering algorithms identified three distinct groups of years since 1982 with similar 

proportions of landings by gear type, 1982-1990, 1991-2004, and 2005-2014 (Figure 4.3). Less 

dominant (i.e., dissimilarity metric < 0.04) transition points were also identified in 1987, 1997, 

and 2011 (Figure 4.3). Changing the start year from 1982 to any year between 1900 and 2002 did 

not result in 2011 being identified as a dominant transition year (results not shown). The first 

assemblage (1982-1990) was dominated by landings from pot/trap gear, whereas the third 

assemblage (2005-2014) was dominated by landings from line gear (Figure 4.4). Landings from 

trawl and line gear dominated the transitionary assemblage from 1991 to 2004. The mean 

proportion of landings from line gear calculated for each assemblage of years increased over time, 

whereas the opposite was true for landings from trawl gear. In 2005, the proportion of landings 

caught using pot/trap gear was higher than all previous years since 1994 (Figure 4.4).  

In general, evenness among gear types increased over time (Figure 4.5). The Simpson 

Diversity Index identified four periods, since 1982, where a single gear type dominated the 

landings (Figure 4.5): 1982-1984 (pot/trap gear), 1989-1993 (trawl gear), 1997-1999 (line gear), 

and 2008 (line gear). 

4.3.2 Drivers of fisher behavior 

Data from the NWFSC Shelf-Slope trawl survey collected from 2003 to 2015 indicate 

sablefish are ubiquitous up and down the US West Coast. Larger than average tows of sablefish 

were observed north of central California but never south of San Francisco (Figure 4.6). The spatial 
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extents of darkblotched and canary rockfish were more similar to sablefish than that of Pacific 

ocean perch (Figure 4.6).  

Port group and the number of vessels (Table 4.2) were the most influential variables, of those 

investigated (Table 4.1), in explaining fisher behavior. San Francisco and Bodega Bay had the 

highest and Coos Bay had the lowest proportion of landings from fixed gear. Three of the nine 

included port groups (Brookings and Crescent City, Coos Bay, and Eureka) had zero landings from 

fixed gear in at least some years. Proportions of zero were excluded from the analysis because of 

the use of the beta distribution, which led to 36 observations. The small sample size decreased the 

ability to estimate effect sizes and could have led to larger standard errors than what would have 

been estimated had the model been fit using more data. For example, the positive effect of the 

number of vessels was only weakly supported (difference in AIC of 1.78) and the lower bound of 

the confidence interval for the effect was close to zero. 

Although the relative abundances of sablefish, canary rockfish, darkblotched rockfish and 

Pacific ocean perch varied spatially over time (Figure 4.7), this variation did not appear to drive 

fisher behavior. Additional species not included in the GLM could be more constraining.  

4.4 DISCUSSION 

Fishers are subject to a number of drivers that can and do affect their behavior. Understanding 

these drivers can help managers devise and improve management plans; particularly, plans that 

include incentives to change fisher behavior. This case study of the US West Coast groundfish 

fishery serves as an example of how retrospective analyses of fisher behavior can be used to inform 

future fisheries management. First, cluster analyses revealed that fishers may not be as apt to 

switch gears as hypothesized. Changes in gear types used to land sablefish between 2011 and 2015 

were seen as small changes when measured against all changes since 1982. Second, results from 

GLMs suggest that future incentive-based management aimed at increasing the proportion of 

sablefish landed using fixed gears could be better informed if they accounted for current incentives 

that are more than likely to vary across the major port groups. We did not model incentives 

explicitly and thus cannot predict incentives that would lead to future change, only that behavior 

differs among the major port groups. These issues are explored in more detail below. 

The LE sector of the US West Coast groundfish fishery experienced several management 

changes in 2011. The allowance for gear switching was implemented concurrently with the 



www.manaraa.com

 

 

80

implementation of the ITQ program for the LE trawl sector. This allowance enabled LE trawl 

permit holders to land quota using fixed gear. Additionally, fishers within the LE fixed-gear sector 

could acquire a trawl permit and fish for its associated quota using fixed gear. We thus 

hypothesized that a dominant transition in gear type would be measured for 2011. However, the 

transition identified for 2011 was less defined than the transitions identified for 1991 and 2005. 

The transition identified for 1991 was largely the result of increased output control measures (i.e., 

shortened fixed-gear seasons; Methot et al., 1994). Conversely, the 2011 allowance for gear 

switching represents a relaxation of an input control measure. It is possible that the changes in gear 

type will be slow because fishers typically exhibit risk-averse behavior (e.g., Eggert and 

Martinsson, 2004). The definition of slow in this context is unclear. Rates of change may increase 

with time as fishers become more informed about the costs of the transition. For instance, the cost 

of new gear might not be outweighed by the higher price per pound when decreased landings of 

other species targeted with trawl gear are taken into account (Cinner, 2007). Decreased differences 

in prices between sablefish landed with fixed gear versus trawl starting in 2012 may have also 

discouraged fishers from using fixed gear.  

Records of sablefish landings confirm that fixed-gear landings did increase. Records also 

highlighted a less publicized shift that occurred in 2008 when fixed gear was allowed within the 

LE trawl sector under an Exempted Fishing Permit. The Exempted Fishing Permit allows vessels 

fishing under six LE trawl permits owned by The Nature Conservancy to fish in waters outside of 

the seaward boundary of the Rockfish Conservation Area between 36ºN (Point Lopez) to 34º27’N 

(Point Conception) using fixed gears. Quotas for limiting species are aggregated across all permits; 

thereby, acting as a community-based management system (TNC, 2014). Consequently, the 

allowance for gear switching in 2011 had less of an abrupt impact on landings originating in central 

California (i.e., “Monterey and Morro Bay”) than it did for the other port groups. Unfortunately, 

vessel data were aggregated to the port-group level without consideration of their participation in 

community-based programs. We were thus unable to tease apart how much of the quota starting 

in 2011 data from “Monterey and Morro Bay” included that from fishers operating under the 

Exempted Fishing Permit from those not under the special permit. Furthermore, some of the fishers 

that participate in the community-based program fish using vessels owned by The Nature 

Conservancy are not using vessels chosen by fishers as optimal for converting to fixed gear. Future 
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work could investigate fisher behavior using vessel-specific data. However, this vessel specific 

information is only available for some of the databases used in this analysis.  

Vessel-specific data would address the issue of assigning vessels to a single port group. For 

this analysis, vessels were assigned to the port for which they had the highest ex-vessel revenue, 

even though vessels may deliver to multiple ports. In this way, port group acted as a proxy for 

spatial location and other variables not included in the model. For instance, we suspect that vessels 

assigned to Oregon ports may have experienced increased difficulty in switching gears, both 

socially and logistically, compared to other port groups because Astoria and Warrenton generate 

the highest trawl revenue of all of US West Coast port communities (Sepez et al., 2006). These 

ports and others in the general vicinity may not be equipped to support vessels fishing with fixed-

gear. Interviewing fishers could provide more insight on actual constraints. Furthermore, using 

vessel-specific data would eliminate the need to include the number of vessels per port group in 

the model. Assigning relative abundances of the resource and the environment to the user is 

difficult given the available data. Here, we determined the average distance fishers travel across 

years to assign relative abundance along the coast to each port group. Vessel monitoring systems 

or automatic identification systems could be an additional source of information on where fishers 

travel. Using data from monitoring systems would limit retrospective analyses because the 

requirement for this technology aboard fishing vessels is relatively new and not universal. In the 

future more precise and accurate estimates could be obtained if information from several surveys 

could be combined in a single analysis to increase spatial and temporal coverage.  

Results demonstrate that fishers can adapt their behavior, within certain constraints, but it 

remains unclear if the increased use of fixed gear should be seen as successful because no target 

goals were set upon implementation. Jenkins and Garrison (2013) hypothesized that most fishers 

using trawl gear would likely not permanently convert to fixed gears and reductions in bycatch 

from using gear with a lower catch rates of non-target species compared to trawl gear would not 

be fully realized without appropriate incentives. Results presented here suggest that if managers 

wish to further increase the proportion of the sablefish TAC landed using fixed gear that future 

incentives could be more effective if they consider how the proposed incentives will lead to 

changes in revenue (Eliasen et al., 2013). For example, allowing fishers to use fixed gear will only 

be fruitful if ports are equipped to buy catches from fixed gear or if other regulations allow them 

to fish in familiar areas with the new gear type (Manson et al., 2012). 
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4.5 TABLES 

Table 4.1. Hypothesized drivers of fisher behavior within the US West Coast LE trawl fishery. 

Variables are linked to one of Ostrom’s (2009) four subsystems that structure social-ecological 

systems, resource system (RS), resource unit (RU), governance system (GS), and resource user 

(U). Data sources include the Northwest Fisheries Science Center (NWFSC) Shelf-Slope Trawl 

Survey conducted from 2003 to 2015, Economic Data Collection (EDC) data provided by the West 

Coast Fisheries Economic Program from 2009 to 2015, and Pacific Fisheries Information Network 

(PacFIN) archives provided by Pacific States Marine Fisheries Commission. Some variables were 

hypothesized to be drivers but spatially- or temporally-explicit information was lacking (“avail”). 

variable (unit) system source interpretation avail.
sablefish (mt) RU NWFSC RU abundance can influence catch 

rates 
yes 

bocaccio rockfish (mt) RS NWFSC potential for bycatch no 
canary rockfish (mt) RS NWFSC potential for bycatch yes 
cowcod rockfish (mt) RS NWFSC potential for bycatch no 
darkblotched rockfish (mt) RS NWFSC potential for bycatch yes 
Pacific ocean perch (mt) RS NWFSC potential for bycatch yes 
yelloweye rockfish (mt) RS NWFSC potential for bycatch no 
community-based 
management 

GS lit rules defined w/o gov. authority no 

vessel length (ft) GS EDC permit transfers are limited by vessel 
size, larger vessels can fish farther 
offshore, and smaller vessels fish with 
fixed gear in near-shore rockfish 
conservation areas 

yes 

fuel (gal∙day-1) U EDC higher fuel prices may cause fishers to 
stay home or target other species 

yes 

crew size (individuals) U EDC increased transaction costs with more 
crew 

yes 

num. of vessels U EDC account for more permits yes 
horse power (hp) U EDC ability to steam to more distant 

grounds 
yes 

fuel capacity (gal) U EDC ability to steam to more distant 
grounds 

yes 
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Table 4.2. Results from fitting generalized linear models to the proportion of sablefish landings 

within the limited entry trawl sector caught using fixed-gear out of all gear types for each port 

group-year combination (“fixed landings”). Parameters are reported for when other variables were 

held at their means, and port groups are listed geographically from north to south. The precision 

parameter (ϕ) was modelled without covariates. The column “year” provides the number of years 

that each port group had landings from fixed gear between 2011 and 2015. Port group x year 

combinations without fixed-gear landings were excluded from the analysis (e.g., Eureka in all 

years). 

variable number 
of 

years 

parameters 

  estimate se p value 

Washington 5 1.44 0.43 <0.01 

Astoria and Tillamook 5 -0.79 0.30 <0.01 

Newport 5 0.28 0.42 0.51 

Coos Bay 4 -1.10 0.53 0.04 

Brookings and Crescent City 2 0.53 0.56 0.34 

Eureka 0   

Fort Bragg 5 -0.64 0.48 0.19 

San Francisco and Bodega Bay 5 2.23 0.45 <0.01 

Monterey and Morro Bay 5 1.46 0.52 <0.01 

Number of vessels  0.41 0.19 0.03 

ϕ  9.22 2.13 <0.01 
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4.6 FIGURES 

 
Figure 4.1. The geographical extent of the US West Coast groundfish fishery. Dashed, horizontal 

lines indicate locations of geophysical points of interest, Cape Blanco (42°50’N), Cape Mendocino 

(40°26’N), and Point Conception (34°27’N). Nine unique port groups were included in the 

analysis, Washington, Astoria and Tillamook, Newport, Coos Bay, Brookings and Crescent City, 

Eureka, Fort Bragg, San Francisco and Bodega Bay, and Monterey and Morro Bay. The solid, 

horizontal line at 36°N defines a management border that defines north from south quota 

allocations.  
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Figure 4.2. Reconstructed and documented US West coast sablefish landings (mt) for all fisheries 

and sectors from 1900 to 2015 by gear type (top panel). Gear types include line (dark gray), 

pot/trap (gray), and trawl (light gray) gear. Landings include those from foreign vessels, which are 

largely responsible for the peak landings in 1976 and 1979. The thin black line indicates the harvest 

guideline (1995-1997), optimum yield (1998-2010), or annual catch limit (2011-2015) summed 

across gear type and area from 1995 to 2015. Proportions by gear type are displayed in the bottom 

panel.  
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Figure 4.3. Three groups of similar years of gear-specific landings from the US West Coast 

sablefish fishery. Dashed, black boxes define the groups that were derived from a hierarchical 

clustering algorithm and average silhouette width (upper inset). Dissimilarities (y-axis) of zero 

indicates there is no difference between groups.  
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Figure 4.4. Two-dimensional non-metric multidimensional scaling (NMDS2) of gear-specific 

sablefish landings within the US West Coast groundfish fishery from 1982 to 2015. Gear types 

include pot/trap (POT), line (LNE), and trawl (TWL) gear.  
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Figure 4.5. Simpson diversity index of landings by gear type for the US West Coast sablefish 

fishery. Higher values indicate increasing evenness among landings from each gear type. The 

vertical dashed line at 1982 indicates the first year of federal management regulations for the US 

West Coast groundfish fishery. Horizontal dashed lines indicate mean evenness for a given range 

of years: 1900 to present (lower) and 1982 to present (upper). Black marks on the x axis indicate 

years where the evenness is below the mean evenness since 1982.  
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Figure 4.6. Positive tows (kg) of sablefish, canary rockfish, darkblotched rockfish, and Pacific 

ocean perch (POP) from the Northwest Fisheries Science Center Shelf-Slope survey from 2003 to 
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2015. Panels display data for a single species over all years, where the size of the transparent circle 

is relative to the species-specific weight in a given tow.  
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Figure 4.7. Relative indexes of abundances by port group of sablefish. Estimates were generated 

using spatiotemporal delta-models fit to data from the Northwest Fisheries Science Shelf-Slope 

trawl survey. Estimates of abundance are for 200 nm north and south of the major port for each 

port group. Lines are model estimates and dashed lines are 95% credible intervals. 
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Chapter 5. CONCLUSION 

5.1 MAJOR CONCLUSIONS 

Since 1985, fisheries management has undergone vast changes. Management complexity 

increased, additional stakeholders became part of the management process, and statistical methods 

to evaluate the status of marine species increased in their flexibility (Hilborn, 2012). Additionally, 

the push for ecosystem models to evaluate impacts beyond individual removals increased. 

Requests for new policies based on EBFM outpaced scientific tools needed to implement them 

and tools that were or became available were often implemented without rigorous testing (Smith 

et al., 2007). Here, two multivariate time-series models were assessed for their ability to provide 

information relevant to EBFM using simulation (Chapters 1 and 3) prior to using them to provide 

management advice (Chapters 2 and 4). Simulations highlighted the need to account for time-

series properties of data and the ability of spatiotemporal models to recover trends in the data even 

when the spatially-explicit data-generating processes used to simulate the data were not included 

in the estimation framework.  

Yule (1926) demonstrated the need to account for serial correlation in data when calculating 

correlation coefficients many years ago. Since then, a plethora of research has been published on 

best practices to avoid spurious correlations (e.g., Katz, 1988; Pyper and Peterman, 1998). For 

some reason, ecologists often choose to ignore these best practices. The use of MARSS models to 

estimate interactions is not new, nor are prewhitening procedures to create white-noise time series. 

The novelty of the work presented here comes from the comparison of the two methods, which 

had not previously been done. The MARSS framework outperformed prewhitening procedures 

when observation error was negligible and the time series was moderate in length. Consequently, 

MARSS models offered an ideal framework for investigating indicator-attribute relationships 

using output from ecosystem models as these did not include observation error. Results highlighted 

the need to engage in ecosystem-specific selection of indicators because of the inability of 

indicators to capture key losses across different types of ecosystems.  

Biomass and TL from survey data were the best indicators of those investigated at tracking 

attributes thought to be of interest to managers responsible for EBFM. All objectives relevant to 

EBFM were not captured by the five attributes included in this analysis and the best indicators will 
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be situational given objectives and ecosystem type. Nevertheless, the goal was to provide a 

framework for assessing indicator-attribute relationships and demonstrate the implications of 

ignoring the time-series properties of attributes and indicators.  

Spatial correlation is also frequently encountered and subsequently ignored in ecological data. 

There are many methods to account for space, where some detect large-scale patterns and others 

account for local autocorrelations (Legendre and Legendre, 1998; Haining, 2003). The benefits of 

accounting for space when data are georeferenced are well established (e.g., Thorson et al., 2015b, 

2015c; Thorson and Barnett, 2017). Benefits with respect to fisheries management include 

improved precision of estimates of relative abundance, as compared to traditional design-based 

estimators. Recently, the capacity has been added for spatial habitat covariates in spatiotemporal 

index standardization models or their inclusion has been advocated for. The practical implications 

of this were tested in Chapter 3.  

Simulation was used to evaluate the benefits and repercussions of including a habitat covariate 

when the true process was and was not governed by habitat. Estimates of linear covariates were 

unbiased. In contrast, quadratic terms were biased, particularly for the catch-rate component of the 

model. Nevertheless, the trend of the index was well estimated and incorrectly including a habitat 

covariate when it did not govern the data-generating process was less problematic than not 

including the covariate when it should have been included.  

The same framework was used to estimate indices of abundance for four species managed by 

the PFMC within the US West Coast Groundfish LE trawl fishery. Importantly, the use of the 

spatiotemporal-index standardization model allowed information on the biological status of 

bycatch species to be related to economic characteristics of vessels at the port-group level, rather 

than aggregated across the fishery as has previously been done.  

Reducing bycatch of non-target individuals was emphasized as a key component of limiting 

the effects of fisheries to the broader ecosystem in early legislation regarding EBFM. Switching 

gears or shifting the spatial footprint of the fishery are often cited as the two most-feasible methods 

to limiting bycatch while allowing the fishery to remain open. Generalized linear models were 

used to estimate socio-economic factors that led fishers in the US West Coast Groundfish LE trawl 

fishery to switch from using trawl-gear to fixed-gear to land sablefish since management allowed 

such gear switching in 2011. Results indicated that the presence of bycatch species was not a major 

factor in their decisions to use fixed-gear. Instead, unmodeled factors related to the major port 
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groups included in the analysis were the best predictor of the proportion of landings that were 

caught using fixed-gear compared to trawl-gear. It was hypothesized that social and logistical 

challenges specific to each port group could limit fishers’ ability or desire to switch gear. For 

example, vessels assigned to Oregon ports may feel pressured by local governance structures to 

fish using trawl-gear because Astoria and Warrenton generate the highest trawl revenue of all ports 

along the US West Coast (Sepez et al., 2006). Additionally, vessels could be limited to trawl-gear 

because ports may not have adequate facilities to process catch from fixed-gear 

This final chapter gathered lessons learned from each of the previous chapters to 

operationalize EBFM using statistical tools. Results will be of interest to those conducting future 

analysis on the implications of management strategies because they are informative about 

management uncertainty. Management uncertainty is the inability to predict how resource users 

will react to management strategies. Thus, under the precautionary approach to management, 

characterization of this uncertainty is vital to the sustainable management of marine fishes. 

Quantitative analyses such as those undertaken here to characterize management uncertainty 

related to gear switching in the US West Coast Groundfish LE trawl fishery are informative for 

shifting the burden of proof that all fisheries lead to ecosystem consequences that are to be avoided, 

thereby helping keep fisheries open.  

5.2 FUTURE WORK 

Multivariate auto-regressive state-space models implemented using the MARSS package in 

R are limited in their flexibility. The package allows for the use of the Gaussian distribution and 

no other options are currently parameterized because the framework uses a Kalman Filter. 

Bayesian implementation of the model-fitting procedure is also not available within the package. 

Lastly, model fitting can be prohibitively slow. Future work could investigate the use of the VAST 

package to fit similar models. VAST allows for several non-normal distributions and can be 

implemented with or without the associated spatial field. Most importantly, VAST is based on the 

Gompertz model (Dennis and Taper, 1994) the same as MARSS. Parameterizing the interactions 

between categories or species may not currently be as flexible as the MARSS framework but it 

could be explored.  

Three additional lines of research should be investigated with respect to the VAST model. 

First, the compound Poisson-gamma distributions (e.g., Lecomte et al., 2013; Thorson, 2017) 
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could be explored. The compound Poisson-gamma distribution mimics the process of capturing 

clusters of biomass, thereby changing the hypotheses about the mean-variance relationship of the 

data. The mean-variance relationship was assumed to be consistent in the simulations because 

fisheries research tends to favor delta-models (Steffanson, 1996). The delta-model limited the 

analysis in terms of comparing the estimated parameters across the two components of the model 

because the logit-link used to model encounters requires the explanation of the expectation in terms 

of odds ratios. In contrast, the catch-rate model can be explained in terms of percent change. This 

limitation becomes increasingly important when the signs of the effects are inconsistent across 

model components (e.g., depth was positively and negatively related to pink shrimp 

(Farfantepenaeus duorarum) occupancy and catch-rate models, respectively; Rubec et al., 2016). 

The compound Poisson-gamma and Poisson-link models eliminate this problem by using a single 

model to both account for the probability of encounter and the number observed (Thorson, 2017). 

Thus, shared inference with respect to relationships between the habitat covariate and encounters 

and positive counts would result from the use of a single parameter. 

Second, boundary conditions of the spatial knots used to approximate the spatial processes in 

the model should be explored. The number of knots were both increased and decreased when fitting 

the empirical data, but the extent of the study area was never changed. Additionally, the study area 

contains regions with islands that have positive depths. Knots can be configured such that portions 

of the study area are excluded from the analysis, but this was not done here.  

Third, other proxies for habitat should be investigated. Depth was investigated because it is 

commonly available for most species through either navigational studies or as a measurement 

collected in conjunction with survey tows. Temperature as a proxy for the availability of 

thermoregulated prey (e.g., Maravelias and Reid, 1997), thermocline depth-to-bottom-depth ratio 

as a proxy for water column production (e.g., Rooper and Martin, 2011), and presence of 

chlorophyll a as a proxy for phytoplankton biomass and oceanic productivity (e.g., Heenan, et al., 

2016) could be explored. 

A major limitation of Chapter 4 was the need to analyze fisher behavior at the port group 

level. Using vessel-specific data would address the issue of how to assign vessels to a single port 

group. For this analysis, vessel-port combinations were based on the port of highest ex-vessel 

revenue even though vessels may deliver to multiple ports. Vessel-specific information would also 

eliminate the need to include the number of vessels per port group in the model. However, it creates 
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a new problem of how to assign relative abundances of the resource and the environment to the 

user. Vessel monitoring systems could provide information on where fishers travel and thus the 

expected abundance of species they have access to. Using data from monitoring systems would 

limit retrospective analyses because the requirement for this technology aboard fishing vessels is 

relatively new and not universal.  
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Appendix A. SUPPLEMENTARY INFORMATION FOR 

CHAPTER 1  

A.1 ESTIMATION METHODS 

Estimates of cross correlation were included in the manuscript despite the fact that most 

simulated time series were autocorrelated thus violating the assumption of independence needed 

to assess the significance of the measurement. Consequently, estimates demonstrated the 

repercussions of not having i.i.d. data and the potential benefits of more appropriate methods. It 

was hypothesized that cross correlation would estimate co-interactions rather than direct-

interactions. 

Pearson’s correlation coefficients provided a measure ranging between ±1 of the intensity of 

the linear relationship between the time series for each investigated lag (Zar, 1999). Potential errors 

introduced by intra-multiplicity (i.e., investigation of numerous  values, such that the probability 

of at least one null hypothesis being rejected is increased beyond the desired Type-I error rate) 

were minimized by restricting the investigation of  to ±2 (Olden and Neff, 2001). Pearson’s 

correlation coefficients were reported instead of Spearman’s non-parametric rank order correlation 

because Pearson is the default method in the R statistical environment (R Core Team 2018) and it 

tends to be the default method in ecological manuscripts. Nevertheless, differences between the 

two methods proved to be trivial. The maximum absolute difference in Pearson versus Spearman 

coefficients across all explored factors was 0.28 and the median was 0.0006.  

Prewhitening included fitting autoregressive integrated moving average (ARIMA) models to 

the leading time series to estimate autocorrelation, differencing, and moving average parameters 

that best fit the data. ARIMA models were fit using the forecast::auto.arima function (Hyndman 

and Khandakar 2008) in the R statistical environment. The model that provided the best fit of those 

investigated was chosen using Akaike information criterion corrected for small sample sizes 

(Burnham and Anderson 2002). Parameter estimates from the best fit model were then applied to 

the second time series and cross correlation coefficients, cross	correlation

∑ , ,

∑ , ∑ ,

, were computed on the residuals, ,  and , , of the respective time series 

at lags, , where z  and  z  are the means of the time series of residuals.  
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To fit a MARSS model one must specify the process and observation models. Specifically, 

the call to MARSS::MARSS has the following default arguments model = list(Z = “identity”, B = 

“identity”, U = “unconstrained”, A = “scaling”, Q = “diagonal and unequal”, Z = “diagonal and 

unequal”, V0 = “zero”, x0 = “unconstrained”). “Unconstrained” estimates all parameters, 

“diagonal and equal” estimates one parameter for the diagonal, “diagonal and unequal” estimates 

each diagonal element, “identity” is a matrix with ones on the diagonal and zeros elsewhere, “zero” 

fixes all parameters at zero, and “scaling” estimates an additional parameter for all observed time 

series beyond the primary time series per unobserved state. Additionally, users can specify 

individual parameters of the parameter matrices such as would be the case if one only wanted to 

estimate one-way direct-interactions (i.e., matrix(list("1:1", "2:1", 0, "2:2"), 2, 2)). The flexibility 

inherent in the MARSS package is facilitated through the use of an Expectation-Maximization 

(EM) algorithm, where the ability to fix at least some parameters can increase identifiability, 

especially with relatively short time series (Zuur et al., 2003).  

Parameters of the investigated MARSS models were specified in the following manner (Table 

A.1). Observation error was either assumed to be zero or estimated as “diagonal and equal”. The 

interaction matrix, , was estimated as an unconstrained matrix, although exploration of fixing the 

upper off-diagonal element at zero was explored via sensitivity testing. Thus,  is the effect of 

the leading time series on the lagging time series and  is the effect of the lagging time series on 

the leading time series. Process errors, , were estimated using an unconstrained matrix. The initial 

state vector included two parameters drawn from a multivariate normal distribution, 

	~	 0, 1 , and results were similar when the parameters were fixed at zero, but they were 

estimated here for completeness. Finally, multiple observations of the unobserved states, when 

provided to the estimation method, were assumed to be on the same scale, and thus, Z became a 

4x2 matrix and A was fixed at zero. 
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A.3 TABLES 

Table A.1. Estimation methods included cross correlation ( ) at lags (k) ±2, prewhitened cross 

correlation at lags ±2 ( ), and multivariate autoregressive state-space (MARSS) models. Cross 

correlation involved prewhitening by estimating first- through fifth-order autoregressive (AR), 

moving average (MA), and differencing (D) parameters that best fit the leading time series and 

applying those to the lagging time series. Four MARSS models were included that differed in how 

observation errors and the model matrix (Z) were parameterized. Blank entries were specified the 

same as the model in the previous row and NA indicates that the parameters did not apply. Quoted 

words such as “unconstrained” are how MARSS models are implemented in the MARSS package 

(Holmes et al., 2012). 

model 
co-interaction self-

correlation 
moving average differencing direct-interaction observation 

error 
Z 

Cross 
correlation 

; 	 ; ;	
; 	  

NA NA NA NA NA NA 

Prewhitened 
cross 
correlation 

; 	 ; ; 

;  

1 ; 2  

3 ; 4  

5  

1 ; 2  

MA 3 ; 4  

5  

1 ; 2  

3 ; 4  

5  

NA NA NA 

MARSS 
models that 
use observed 
time series as 
observations 
of unobserved 
states, and the 
Z matrix 
maps 
observations 
to these states. 

 

(  

;	  NA NA ;  
(“unconstrained”) 

0 (“zero”) 1 0
0 1

 

     0 1 0
0 1
1 0
0 1

 

     0
0

 

(“equal”) 

1 0
0 1

 

     0 0 0
0 0 0
0 0 0
0 0 0

(“equal”) 

1 0
0 1
1 0
0 1
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Table A.2. Prewhitening included fitting an autoregressive integrated moving average model 

(ARIMA) to the leading time series. Autoregressive (p), moving average (q), and differencing (d) 

orders were limited to five for each parameter and parameters were chosen using Akaike 

information criteria corrected for small sample sizes. Proportions of models that utilized a given 

order are reported for levels self-interactions, observation-error variance (z), length of the time 

series (n), and number of observations per state (ns). Input values to the simulation for co-

interactions and direct-interactions did not lead to changes in the proportions.  

 self z n ns p.1 p.2 p.3 p.4 q.1 q.2 q.3 q.4 d.1 d.2 d.3 

-0.9 0 25 1 0.04 0.75 0.21 0.00 0.93 0.07 0.00 0.00 1.00 0.00 0.00 

-0.9 0 100 1 0.00 0.87 0.13 0.00 0.89 0.06 0.04 0.01 1.00 0.00 0.00 

0 0 25 1 0.93 0.04 0.03 0.00 0.91 0.09 0.00 0.00 0.96 0.04 0.00 

0 0 100 1 0.91 0.05 0.04 0.00 0.92 0.05 0.03 0.00 0.97 0.03 0.00 

0.9 0 25 1 0.65 0.29 0.05 0.01 0.85 0.14 0.01 0.00 0.46 0.53 0.01 

0.9 0 100 1 0.55 0.32 0.12 0.01 0.88 0.09 0.01 0.02 0.39 0.61 0.00 

-0.9 1 25 1 0.22 0.66 0.11 0.01 0.86 0.14 0.00 0.00 0.94 0.06 0.00 

-0.9 1 25 2 0.11 0.65 0.21 0.02 0.71 0.22 0.06 0.01 1.00 0.00 0.00 

-0.9 1 100 1 0.00 0.72 0.25 0.03 0.42 0.46 0.08 0.04 1.00 0.00 0.00 

-0.9 1 100 2 0.00 0.57 0.29 0.11 0.27 0.43 0.23 0.04 0.99 0.01 0.00 

0 1 25 1 0.93 0.03 0.04 0.00 0.88 0.09 0.03 0.00 0.95 0.05 0.00 

0 1 25 2 0.93 0.05 0.01 0.01 0.87 0.10 0.03 0.00 1.00 0.00 0.00 

0 1 100 1 0.89 0.08 0.02 0.01 0.86 0.11 0.02 0.01 0.98 0.02 0.00 

0 1 100 2 0.67 0.14 0.16 0.01 0.71 0.12 0.14 0.03 0.99 0.01 0.00 

0.9 1 25 1 0.63 0.36 0.01 0.00 0.84 0.16 0.00 0.00 0.52 0.47 0.01 

0.9 1 25 2 0.22 0.61 0.16 0.01 0.80 0.12 0.08 0.00 0.94 0.06 0.00 

0.9 1 100 1 0.35 0.48 0.16 0.01 0.30 0.56 0.13 0.01 0.46 0.54 0.00 

0.9 1 100 2 0.13 0.54 0.25 0.06 0.23 0.45 0.26 0.06 0.79 0.21 0.00 
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Table A.3. Convergence rates of multivariate autoregressive state-space (MARSS) models across 

investigated levels of direct-interactions and co-interactions, self-interactions, observation error 

variance (z), length of time series (n), and number of observations per state (ns). The proportion 

of models that converged out of the 100 fit per scenario are reported for models that were fit to the 

“raw” and standardized (“std”; mean of zero and standard deviation of one) simulated data. 

Convergence was defined as the ability to successfully produce and invert the hessian matrix such 

that estimate standard errors were estimated for each parameter. Multivariate autoregressive 

(MAR) models did not estimate observation error and MARSS models assumed observation was 

uncorrelated with equal variance.

 type direct co self z n ns raw std 

MAR -0.90 -0.90 -0.90 0 25 1 0.33 0.79

MAR -0.90 -0.90 -0.90 0 50 1 0.29 0.6

MAR -0.90 -0.90 -0.90 0 100 1 0.2 0.33

MAR -0.90 -0.90 0.00 0 25 1 0.32 0.4

MAR -0.90 -0.90 0.00 0 50 1 0.26 0.42

MAR -0.90 -0.90 0.00 0 100 1 0.18 0.38

MAR -0.90 -0.90 0.90 0 25 1 0.44 0.86

MAR -0.90 -0.90 0.90 0 50 1 0.33 0.64

MAR -0.90 -0.90 0.90 0 100 1 0.22 0.29

MAR -0.90 0.00 -0.90 0 25 1 0.97 0.99

MAR -0.90 0.00 -0.90 0 50 1 0.92 0.94

MAR -0.90 0.00 -0.90 0 100 1 0.84 0.95

MAR -0.90 0.00 0.00 0 25 1 0.79 0.81

MAR -0.90 0.00 0.00 0 50 1 0.87 0.88

MAR -0.90 0.00 0.00 0 100 1 0.74 0.82

MAR -0.90 0.00 0.90 0 25 1 0.96 0.99

MAR -0.90 0.00 0.90 0 50 1 0.94 1

MAR -0.90 0.00 0.90 0 100 1 0.86 0.98

MAR -0.90 0.90 -0.90 0 25 1 0.31 0.76

MAR -0.90 0.90 -0.90 0 50 1 0.24 0.51

MAR -0.90 0.90 -0.90 0 100 1 0.14 0.26

MAR -0.90 0.90 0.00 0 25 1 0.34 0.43

MAR -0.90 0.90 0.00 0 50 1 0.25 0.39

MAR -0.90 0.90 0.00 0 100 1 0.12 0.35

MAR -0.90 0.90 0.90 0 25 1 0.38 0.84

MAR -0.90 0.90 0.90 0 50 1 0.25 0.68

MAR -0.90 0.90 0.90 0 100 1 0.18 0.35

MAR 0.00 -0.90 -0.90 0 25 1 0.32 0.33
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MAR 0.00 -0.90 -0.90 0 50 1 0.31 0.28

MAR 0.00 -0.90 -0.90 0 100 1 0.24 0.23

MAR 0.00 -0.90 0.00 0 25 1 0.28 0.32

MAR 0.00 -0.90 0.00 0 50 1 0.21 0.25

MAR 0.00 -0.90 0.00 0 100 1 0.12 0.12

MAR 0.00 -0.90 0.90 0 25 1 0.4 0.45

MAR 0.00 -0.90 0.90 0 50 1 0.27 0.31

MAR 0.00 -0.90 0.90 0 100 1 0.18 0.24

MAR 0.00 0.00 -0.90 0 25 1 0.95 0.99

MAR 0.00 0.00 -0.90 0 50 1 0.91 0.9

MAR 0.00 0.00 -0.90 0 100 1 0.77 0.9

MAR 0.00 0.00 0.00 0 25 1 0.77 0.86

MAR 0.00 0.00 0.00 0 50 1 0.77 0.89

MAR 0.00 0.00 0.00 0 100 1 0.66 0.78

MAR 0.00 0.00 0.90 0 25 1 0.97 0.92

MAR 0.00 0.00 0.90 0 50 1 0.91 0.97

MAR 0.00 0.00 0.90 0 100 1 0.86 0.92

MAR 0.00 0.90 -0.90 0 25 1 0.32 0.36

MAR 0.00 0.90 -0.90 0 50 1 0.25 0.3

MAR 0.00 0.90 -0.90 0 100 1 0.16 0.23

MAR 0.00 0.90 0.00 0 25 1 0.31 0.32

MAR 0.00 0.90 0.00 0 50 1 0.2 0.22

MAR 0.00 0.90 0.00 0 100 1 0.1 0.16

MAR 0.00 0.90 0.90 0 25 1 0.43 0.33

MAR 0.00 0.90 0.90 0 50 1 0.29 0.25

MAR 0.00 0.90 0.90 0 100 1 0.21 0.2

MAR 0.90 -0.90 -0.90 0 25 1 0.3 0.8

MAR 0.90 -0.90 -0.90 0 50 1 0.28 0.57

MAR 0.90 -0.90 -0.90 0 100 1 0.2 0.28

MAR 0.90 -0.90 0.00 0 25 1 0.3 0.47

MAR 0.90 -0.90 0.00 0 50 1 0.21 0.42

MAR 0.90 -0.90 0.00 0 100 1 0.19 0.44

MAR 0.90 -0.90 0.90 0 25 1 0.4 0.85

MAR 0.90 -0.90 0.90 0 50 1 0.33 0.68

MAR 0.90 -0.90 0.90 0 100 1 0.24 0.37

MAR 0.90 0.00 -0.90 0 25 1 0.94 0.96

MAR 0.90 0.00 -0.90 0 50 1 0.93 0.97

MAR 0.90 0.00 -0.90 0 100 1 0.85 0.94

MAR 0.90 0.00 0.00 0 25 1 0.86 0.88

MAR 0.90 0.00 0.00 0 50 1 0.81 0.83

MAR 0.90 0.00 0.00 0 100 1 0.77 0.8



www.manaraa.com

 

 

129

MAR 0.90 0.00 0.90 0 25 1 0.96 0.97

MAR 0.90 0.00 0.90 0 50 1 0.92 0.98

MAR 0.90 0.00 0.90 0 100 1 0.88 0.97

MAR 0.90 0.90 -0.90 0 25 1 0.3 0.81

MAR 0.90 0.90 -0.90 0 50 1 0.25 0.59

MAR 0.90 0.90 -0.90 0 100 1 0.14 0.32

MAR 0.90 0.90 0.00 0 25 1 0.31 0.41

MAR 0.90 0.90 0.00 0 50 1 0.25 0.39

MAR 0.90 0.90 0.00 0 100 1 0.14 0.38

MAR 0.90 0.90 0.90 0 25 1 0.41 0.81

MAR 0.90 0.90 0.90 0 50 1 0.28 0.64

MAR 0.90 0.90 0.90 0 100 1 0.17 0.25

MARSS 0.00 -0.90 -0.90 1 25 1 0.01 0.02

MARSS 0.00 -0.90 -0.90 1 25 2 0.03 0.14

MARSS 0.00 -0.90 -0.90 1 100 1 0 0.1

MARSS 0.00 -0.90 -0.90 1 100 2 0.05 0.13

MARSS 0.00 -0.90 0.00 1 25 1 0.05 0.09

MARSS 0.00 -0.90 0.00 1 25 2 0.11 0.11

MARSS 0.00 -0.90 0.00 1 100 1 0.01 0.04

MARSS 0.00 -0.90 0.00 1 100 2 0.03 0.12

MARSS 0.00 -0.90 0.90 1 25 1 0.06 0.11

MARSS 0.00 -0.90 0.90 1 25 2 0.13 0.21

MARSS 0.00 -0.90 0.90 1 100 1 0.24 0.42

MARSS 0.00 -0.90 0.90 1 100 2 0.46 0.5

MARSS 0.00 0.00 -0.90 1 25 1 0 0.07

MARSS 0.00 0.00 -0.90 1 25 2 0.06 0.26

MARSS 0.00 0.00 -0.90 1 100 1 0 0.31

MARSS 0.00 0.00 -0.90 1 100 2 0.16 0.66

MARSS 0.00 0.00 0.00 1 25 1 0.03 0.08

MARSS 0.00 0.00 0.00 1 25 2 0.2 0.36

MARSS 0.00 0.00 0.00 1 100 1 0.02 0.04

MARSS 0.00 0.00 0.00 1 100 2 0.3 0.4

MARSS 0.00 0.00 0.90 1 25 1 0.14 0.38

MARSS 0.00 0.00 0.90 1 25 2 0.38 0.68

MARSS 0.00 0.00 0.90 1 100 1 0.84 0.9

MARSS 0.00 0.00 0.90 1 100 2 0.79 0.82

MARSS 0.00 0.90 -0.90 1 25 1 0 0.04

MARSS 0.00 0.90 -0.90 1 25 2 0.04 0.06

MARSS 0.00 0.90 -0.90 1 100 1 0 0.07

MARSS 0.00 0.90 -0.90 1 100 2 0.07 0.12

MARSS 0.00 0.90 0.00 1 25 1 0.03 0.03
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MARSS 0.00 0.90 0.00 1 25 2 0.06 0.1

MARSS 0.00 0.90 0.00 1 100 1 0.01 0.03

MARSS 0.00 0.90 0.00 1 100 2 0.09 0.08

MARSS 0.00 0.90 0.90 1 25 1 0.08 0.16

MARSS 0.00 0.90 0.90 1 25 2 0.13 0.21

MARSS 0.00 0.90 0.90 1 100 1 0.26 0.38

MARSS 0.00 0.90 0.90 1 100 2 0.38 0.49

MARSS 0.90 -0.90 -0.90 1 25 1 0.04 0.15

MARSS 0.90 -0.90 -0.90 1 25 2 0.02 0.31

MARSS 0.90 -0.90 -0.90 1 100 1 0.05 0.59

MARSS 0.90 -0.90 -0.90 1 100 2 0 0.45

MARSS 0.90 -0.90 0.00 1 25 1 0.01 0.11

MARSS 0.90 -0.90 0.00 1 25 2 0.15 0.2

MARSS 0.90 -0.90 0.00 1 100 1 0.03 0.07

MARSS 0.90 -0.90 0.00 1 100 2 0.08 0.11

MARSS 0.90 -0.90 0.90 1 25 1 0.28 0.7

MARSS 0.90 -0.90 0.90 1 25 2 0.33 0.8

MARSS 0.90 -0.90 0.90 1 100 1 0.32 0.98

MARSS 0.90 -0.90 0.90 1 100 2 0.15 0.86

MARSS 0.90 0.00 -0.90 1 25 1 0.01 0.21

MARSS 0.90 0.00 -0.90 1 25 2 0.04 0.43

MARSS 0.90 0.00 -0.90 1 100 1 0.02 0.61

MARSS 0.90 0.00 -0.90 1 100 2 0.09 0.75

MARSS 0.90 0.00 0.00 1 25 1 0.02 0.08

MARSS 0.90 0.00 0.00 1 25 2 0.3 0.49

MARSS 0.90 0.00 0.00 1 100 1 0.05 0.15

MARSS 0.90 0.00 0.00 1 100 2 0.34 0.53

MARSS 0.90 0.00 0.90 1 25 1 0.36 0.6

MARSS 0.90 0.00 0.90 1 25 2 0.56 0.76

MARSS 0.90 0.00 0.90 1 100 1 0.78 0.95

MARSS 0.90 0.00 0.90 1 100 2 0.78 0.87

MARSS 0.90 0.90 -0.90 1 25 1 0.01 0.14

MARSS 0.90 0.90 -0.90 1 25 2 0.04 0.4

MARSS 0.90 0.90 -0.90 1 100 1 0 0.57

MARSS 0.90 0.90 -0.90 1 100 2 0.03 0.62

MARSS 0.90 0.90 0.00 1 25 1 0 0.12

MARSS 0.90 0.90 0.00 1 25 2 0.13 0.24

MARSS 0.90 0.90 0.00 1 100 1 0.04 0.09

MARSS 0.90 0.90 0.00 1 100 2 0.14 0.16

MARSS 0.90 0.90 0.90 1 25 1 0.18 0.5

MARSS 0.90 0.90 0.90 1 25 2 0.32 0.71
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MARSS 0.90 0.90 0.90 1 100 1 0.27 0.99

MARSS 0.90 0.90 0.90 1 100 2 0.23 0.51
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A.4 FIGURES 

 

Figure A.1. Examples of a leading and lagging time series  (top and bottom panels, respectively) 

generated from the simulation process when there was no direct-interaction and the co-interaction 

was -0.9. Each time series exhibited an self-interaction of -0.9. The points are the unobserved states 

and the lines are the observed time series with observation error, where the variance of the 

observation error is one.  
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Figure A.2. Violin plots of estimated direct-interactions from cross correlation (dark gray), 

prewhitened cross correlation (gray), and multivariate autoregressive state-space (MARSS) 

models that did not estimate observation error (referred to as MAR models; light gray) across three 

levels of self-interactions (rows), direct-interactions (columns), and co-interactions (x-axis). Fitted 

time series included 25 data points observed without error. Horizontal dashed, red lines indicate 

the true value used to simulate the data. The prewhitening model was the model that best fit the 

leading time series as chosen by Akaike information criteria corrected for small sample size. 

Results from MAR models are limited to those that successfully estimated standard errors for all 

included parameters.  
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Figure A.3. Same as Figure A.2, except y-axis displays estimates of co-interactions. 
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Figure A.4. Same as Figure A.2, except y-axis displays estimates of AR(1) from the prewhitening 

procedure (gray) and from MAR models for the leading (light gray) and lagging (light gray with 

black border) time series.  
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Figure A.5. Same as Figure A.2, except for models fit to 100 data points rather than 25 and across 

a wider range of input values for the direct-interaction (columns). 

  



www.manaraa.com

 

 

137

 
Figure A.6. Same as Figure A.5, except the y-axis for estimates of co-interactions. 
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Figure A.7. Same as Figure A.5, except the y-axis displays estimates of AR(1) from the 

prewhitening procedure (gray) and from MAR models for the leading (light gray) and lagging 

(light gray with black border) time series.  
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Figure A.8. Violin plots of estimated self-interactions of the leading time series (dark gray), direct-

interactions (gray), and co-interactions (light gray) from multivariate autoregressive state-space 

(MARSS) models fit two 100-year time series per state. Data were simulated using two levels of 

self-interactions (rows), direct-interactions (columns), and co-interactions (x-axis). Horizontal 

dashed, red lines indicate the true values for each parameter of interest (panels). Time series were 

simulted with an observation-error variance of 1.0. Results are limited to those that successfully 

estimated standard errors for all included.  
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Figure A.9. Same as Figure A.8, except for time series with 25 data points.  
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Figure A.10. Violin plots of estimated direct-interactions from prewhitened cross correlation, 

multivariate autoregressive (MAR) models, and multivariate autoregressive state-space (MARSS) 

models fit to 25 and 100 years of data (black and gray, respectively) across two levels co-

interactions (x-axis). Time series were simulted with a direct-interaction of 0.9 (horizontal dashed, 

red line), self-interactions of 0.9, and observation-error variance of 1.0. Only MARSS models 

estimated observation error. The prewhitening model was the model that best fit the leading time 

series as chosen by Akaike information criterion corrected for small sample size. Results from 

MAR models are limited to those that successfully estimated standard errors for all included 

parameters.  
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Figure A.11. Same as Figure A.2, except for standardized time series of 100 data points. 

Standardization led to the data having a mean of zero and a standard deviation of one. 
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Appendix B. SUPPLEMENTARY INFORMATION FOR 

CHAPTER 2 

B.1 METHODS 

The twelve included indicators are part of a suite of indicators selected by the Indicators for 

the Seas (IndiSeas) Working Group (Table A1), an international collaborative developed to 

evaluate the status of exploited marine ecosystems (Coll et al., 2016). Indicators were selected 

from a list proposed to facilitate ecosystem-based management (EBM) by IndiSeas because of 

their expected ability to assess the sustainability of harvests and incorporate broader ecosystem 

considerations. As listed in the main text, the twelve indicators are biomass of the surveyed 

community (TB), inverse of the coefficient of variation of the surveyed-community biomass over 

the last 10 years (BS), inverse fishing pressure (invF), biomass-weighted mean (“mean”) intrinsic 

vulnerability index of fish in the catch (IVI), mean fish length in the surveyed community (LG), 

mean maximum fish life span in the surveyed community (LS), mean marine trophic index of the 

catch (MTI), proportion of non-declining exploited species that have an assessment of their status 

(NDES), proportion of predatory fish in the surveyed community (PF), proportion of non-fully-

exploited stocks (i.e., current biomass greater than 60% of unfished biomass) of those that are or 

could be assessed (SS), mean trophic level (TL) of the catch (TLc), and mean TL of the surveyed 

community (TLs). Some indicators were represented as inverses of more well-known indicators, 

such that all indicators decreased with increasing fishing pressure 

Indicators were calculated from catch and survey data. In the context of this simulation study, 

survey data corresponded to model output (i.e., biomass time series) of groups defined by model 

developers as those that have an appreciable amount of their biomass surveyed in actuality during 

routine surveys, such that the resulting empirical data could be used to generate a reliable index of 

abundance for an assessment of their status. Survey-based indicators were based only on output 

from these groups. IndiSeas calculated their survey-based indicators using data collected from 

fishery-independent sources on adult demersal and pelagic bony and cartilaginous fish and 

commercially important invertebrates (Coll et al., 2016). Simulated catches consisted of all groups 

marked as “caught” by model developers, where this could include both targeted and bycatch 

groups, but always targeted groups. This definition largely matches IndiSeas’ definition of catch 
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data that included landed species and discards if discards were from a target species for which 

certain size classes were not profitable to retrain. Simulated model output necessary to calculate 

two additional indicators proposed by IndiSeas, mean TL of the modelled community estimated 

from Ecosim models fitted to time-series data and proportion of discards in the fishery, were not 

available within the context of this simulation. 

Life-history information for modelled groups that contained multiple species were based on 

the most dominant species within the group or a biomass-weighted mean. Information sources 

varied amongst the ecosystems, but largely relied on information contained in Fishbase 

(fishbase.org; sealifebase.org). Maximum, theoretical length ( ; cm) was derived from von 

Bertalanffy (von Bertalanffy, 1938) relationships or using Fishbase, if it was not available from 

local sources. Maximum age ( ; year) and TL were also determined from Fishbase, if they 

were not available from local sources. Both  and  were fixed parameters in their respective 

indicator calculations for each modelled group (Table B.1). The intrinsic vulnerability index (IVI; 

Cheung et al., 2005), which can range from 0 to 100, is based on life-history traits and ecological 

characteristics from Fishbase.  

Predatory fish were defined as those with a trophic level greater than 3.5 rather than using 

direct information on diets. IndiSeas defined predatory fishes as those that were largely piscivorous 

or fed on invertebrates larger than 2 cm in length.  

Mean length of fish in the surveyed community had to be adapted to work with simulated 

output. Atlantis outputs included weights of modelled groups at specific times and not of individual 

fish. Thus, weights of modelled groups were used to calculate a biomass-weighted maximum 

length, where maximum length of a group was a fixed parameter defined by model developers.  

Management targets were standardized based on Food and Agriculture Organization of the 

United Nations (FAO) definition of exploitation levels. Non-fully exploited is defined by FAO as 

a stock with a current biomass estimate greater than 0.6 of unfished biomass (FAO, 2011). Only 

stocks that were or could be assessed to provide an estimate of unfished biomass were included in 

the sustainable stock indicator. Therefore, both stocks that are assessed using fishery-dependent or 

-independent methods and stocks that are surveyed but do not currently have an assessment were 

included in the metric. IndiSeas based their indicator on the same metric of sustainability as defined 

by FAO but used estimates of current depletion available in the latest FAO report (2011; 
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http://www.fao.org/docrep/015/i2389e/i2389e.pdf, part D), augmented with expert opinion and 

information gleaned from white papers, if estimates were not available.  

The proportion of non-declining species (NDES), originally developed to circumvent the 

statistical fallacies of repeatedly testing regression and correlation coefficients in community 

analyses (Lynam et al., 2010), was calculated using Kendall’s tau over ten-year time periods to 

provide a time-series measure. Thus, the metric provides a moving window of trends in biomass 

for each ecosystem. Kendall’s tau was calculated from time series of biomass outputs and their 

corresponding years for groups that were exploited. The final metric, NDES, was then computed 

by adding up the number of groups with a tau greater than or equal to zero divided by the number 

of estimated tau parameters within an ecosystem for each ten-year time period. 

Analyses were performed on results from eight simulated ecosystems. Two versions of SE 

Australia (AustSE) and NE US (Neus) were included where the first version was parameterized in 

terms of constant fishing effort similar to recent years and the second version was parameterized 

in terms of dynamic effort (i.e., fishing rates varied with time) to match the time-series data on 

which the ecosystem model was based. All other ecosystems, California Current (CalCu), 

Chesapeake Bay (CAM), Northern Gulf of California (GOC), Gulf of Mexico (GoMex), Guam, 

and Nordic and Barents Sea (NOBA), had one version and were parameterized in terms of constant 

fishing rates.  
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B.3 TABLES 

Table B.1. Indicators from those proposed by Indicator for the Seas (IndiSeas) Working Group 

used to track the direct and broader impacts of fishing on exploited marine ecosystems, along with 

their definitions (Coll et al., 2016). Some indicator calculations were modified to work with the 

Atlantis output as noted in “attribute definition”. A blank entry indicates no difference between 

the IndiSeas definition and the definition used here. Corresponding attributes are calculated from 

the total relevant (i.e., TL > 1) biomass rather than the respective survey or catch biomasses. 

Abbreviations are as follows: coefficient of variation (CV), biomass ( ), equilibrium biomass 

( ), fished group (f), intrinsic vulnerability (IV), maximum age ( ), maximum length ( ), 

modelled group (g), predatory fish groups with a trophic level > 3.5, standard deviation (sd), and 

trophic level (TL). 

Label Calculation IndiSeas definition Definition used here Attribute definition 
Biomass,   Total survey biomass  Total ecosystem biomass

groups with TL > 1 
Biomass 
stability 

	10	
	10	

 
1 / CV (10-year survey 
biomass) 

 1/CV (10-year ecosystem
biomass) 

Inverse fishing 
 

Survey biomass / catch  Ecosystem biomass / cat

Mean 
vulnerability 

∑ ∗
∑

 
Mean intrinsic 
vulnerability index of 
retained fish 

Biomass-weighted 
mean intrinsic 
vulnerability index of 
caught fish 

Biomass-weighted mean
intrinsic vulnerability ind
all fish 

     
Fish size ∑ ∗

∑
 

Mean fish length in the 
surveyed community 

Biomass-weighted 
mean maximum length 
of surveyed fish 

Biomass-weighted mean
maximum length of all fi

Life span ∑ ∗

∑
 

Mean max life span of 
surveyed fish 

 Biomass-weighted mean
life span of all fish 

Trophic index ∑ 	 ∗
∑

 
Catch-based marine trophic 
index 

Catch-based marine 
trophic index 

Ecosystem-based marine
trophic index 

Non-declining 
species 

∑ 1: 10, 0, 1, 0
∑ 1

 
Proportion of non-
declining exploited species 

Proportion of non-
declining exploited 
groups  

Proportion of non-declin
species 

Predators ∑
∑

 
Proportion of predatory 
fish in the survey 

Proportion of fish with 
TL > 3.5 in the survey 

Proportion of fish with a
3.5 in the ecosystem 

Sustainable 
stocks 

∑ 0.6 , 1, 0
∑ 	 	 	 	 , 1, 0

 
Proportion of non-fully 
exploited stocks 

Proportion of 
exploited stocks that 
are or could be 
assessed with B>0.6B0 

Proportion of exploited s
with B>0.6B0 

TL of catch ∑ ∗
∑

 
Mean TL of catch Biomass-weighted 

mean TL of caught 
groups 

Biomass-weighted mean
the ecosystem 

TL of survey ∑ ∗
∑

 
Mean TL of surveyed 
community 

 Biomass-weighted mean
the ecosystem 
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Table B.2. Definitions of the attributes selected for their importance to ecosystem structure and 

function. Attributes are calculated from the total relevant biomass (i.e., trophic level (TL) > 1), 

except for net primary productivity (NPP), which includes all autotrophic groups with TL ≥ 1. 

Note that total biomass (B) and TL of the ecosystem directly correspond to indicators and are 

attributes included in Table B.1. 

Label Calculation Definition 
Net primary 

productivity (NPP) 
 Biomass produced by autotrophs 

Total biomass 
	

	 	
 Total biomass of all modelled groups ( ) with a TL > 1 

TL of the ecosystem ∑ ∗	 	

∑ 	 	
 

Biomass-weighted mean TL of all modelled groups with a TL > 1 

Total biomass / NPP ∑ 		 	

∑
 

Biomass of the ecosystem (i.e., TL > 1) divided by NPP 

Target biomass  Biomass of groups targeted by fisheries ( ) 
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Table B.3. The number of sensitive indicator-attribute relationships , where the confidence interval 

that did not cross zero for the direct- and the co-interactions. The twelve indicators are as follows: 

inverse of the coefficient of variation of the surveyed-community biomass over the last 10 years 

(BS), inverse fishing pressure (invF), biomass-weighted mean (“mean”) intrinsic vulnerability 

index of fish in the catch (IVI), mean fish length in the surveyed community (LG), mean maximum 

fish life span in the surveyed community (LS), mean marine trophic index of the catch (MTI), 

proportion of non-declining exploited species that have an assessment of their status (NDES), 

proportion of predatory fish in the surveyed community (PF), proportion of non-fully-exploited 

stocks (i.e., current biomass greater than 60% of unfished biomass) of those that are or could be 

assessed (SS), biomass of the surveyed community (TB), mean trophic level (TL) of the catch 

(TLc), and mean TL of the surveyed community (TLs). Additional attributes not included in self-

tests include primary productivity (NPP), TB/NPP, and target biomass (Tar). The number of 

possible scenarios differed for each scenario type; where, the base case, fishing, marine protected 

area, and ocean acidification drivers of change had 10, 112 (16x7), 27 (3x9), and 20 (2x10) 

potential estimates per relationship, respectively. All ten ecosystems were included in the BC and 

OA scenarios, but the two ecosystems with dynamic fishing and the Nordic and Barents Sea were 

excluded from the fishing scenarios, and the NE US ecosystem was excluded from the marine 

protected area driver of change. Missing values indicate that the indicator-attribute combination 

was not investigated. 

indicator interaction attribute 

 direct co TB NPP TB/NPP TLeco Tar BS invF IVI LG LS MTI NDES PF SS

BS TRUE FALSE 44 33 26 4 22 18         

BS TRUE TRUE 4  8 4 4 13         

BS FALSE TRUE 5 6 3 3 7 9         

invF TRUE FALSE 4 13 23 5 1  7        

invF TRUE TRUE 27 28 5 31 27  59        

invF FALSE TRUE 32 35 1 5 15  35        

IVI TRUE FALSE 5 16 12 26 7   15       

IVI TRUE TRUE 11  7 15 23   25       

IVI FALSE TRUE 25 8 10 16 37   35       

LG TRUE FALSE 29 9 23 21 12    9      

LG TRUE TRUE 5 10 6 21 33    51      

LG FALSE TRUE 13 23 13 22 12    25      

LS TRUE FALSE 48 29 33 12 3     3     

LS TRUE TRUE 7 16 15 15 13     71     

LS FALSE TRUE 36 35 11 7 10     40     
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MTI TRUE FALSE 24 37 24 47 1      48    

MTI TRUE TRUE 14 4 3 12 19      22    

MTI FALSE TRUE 39 22 1 5 4      9    

NDES TRUE FALSE 24 8 41 2 21       1   

NDES TRUE TRUE 1 3 3 6 17       108   

NDES FALSE TRUE 4 7  2 1       20   

PF TRUE FALSE 3 19 13 25 2        16  

PF TRUE TRUE 15 18  28 21        81  

PF FALSE TRUE 38 36 9 1 8        27  

SS TRUE FALSE 22 10 32 16 12          

SS TRUE TRUE 13 5 2 5 7         41

SS FALSE TRUE 2 7 5 2 2         11

TB TRUE FALSE 5 3 22            

TB TRUE TRUE 61 8 24 28 82          

TB FALSE TRUE 49 35 23 16 19          

TLc TRUE FALSE 25 28 23 48 3          

TLc TRUE TRUE 12 3 2 13 23          

TLc FALSE TRUE 41 20 3 9 5          

TLsc TRUE FALSE 15 15 25 10 6          

TLsc TRUE TRUE 20 11  20 18          

TLsc FALSE TRUE 49 36 14 19 14          
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Table B.4. Proportion of positive and negative co-interactions (top and bottom panels, respectively) out of the total number of indicator-

attribute relationships investigated to determine indicator representativeness for each driver of change (column; i.e., one 

indicator:attribute combination across all ecosystems). Drivers of change include the base case (BC); fishing (F) at three levels of the 

BC on all, demersal (dem), invertebrate (inv), large pelagic (lpel), and small pelagic (spel) groups; three levels of marine protected areas 

(MPAs); and two levels of ocean acidification (OA). See caption of Table B.3 for definitions of the indicator acronyms. Proportions 

greater than 0.5 are highlighted in gray. The sum for a given row/column combination across the panels may not always equal one 

because estimates were only considered positive or negative if their confidence interval did not cross zero. 

si
gn

 

in
di

ca
to

r driver of change 

BC F_all F_dem F_inv F_lpel F_spel MPA OA 

  0% 50% 200% 0% 50% 200% 0% 50% 200% 0% 50% 200% 0% 50% 200% 10% 25% 50% 0.05 0.01 

po
si

ti
ve

 

BS 
0.20 0.14 0.29 0.00 0.14 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.43 0.14 0.00 0.22 0.22 0.33 0.40 0.30 

invF 
0.80 0.00 0.57 0.71 0.71 0.71 0.71 0.71 0.43 0.71 0.71 0.71 0.71 0.71 0.71 0.57 0.78 0.78 0.89 0.80 0.80 

IVI 
0.30 0.00 0.43 0.71 0.43 0.43 0.57 0.57 0.43 0.57 0.43 0.29 0.14 0.57 0.29 0.43 0.33 0.22 0.33 0.70 0.50 

LG 
0.70 0.71 0.57 0.86 0.71 0.71 1.00 0.57 0.57 0.71 0.57 0.57 0.43 1.00 0.71 0.71 0.78 0.78 0.78 0.70 0.70 

LS 
1.00 0.86 1.00 1.00 1.00 1.00 1.00 0.86 0.86 1.00 0.86 0.86 0.86 0.86 0.86 1.00 1.00 1.00 1.00 0.90 0.90 

MTI 
0.30 0.00 0.43 0.29 0.43 0.43 0.43 0.14 0.43 0.14 0.43 0.29 0.43 0.29 0.29 0.29 0.22 0.11 0.11 0.20 0.20 

NDES 
0.80 0.00 0.86 1.00 0.86 1.00 0.86 1.00 0.86 0.86 0.71 0.86 0.71 0.86 1.00 0.86 0.89 0.89 0.89 0.90 0.90 

PF 
0.70 0.71 0.86 0.57 0.57 0.57 0.57 0.71 0.86 0.57 0.86 0.57 0.57 0.57 0.57 0.71 0.78 0.67 0.78 0.90 0.90 

SS 
0.40 0.00 0.43 0.57 0.43 0.43 0.43 0.43 0.57 0.57 0.29 0.57 0.29 0.57 0.57 0.57 0.44 0.11 0.22 0.30 0.30 

TB 
0.80 0.86 0.86 0.57 0.86 0.86 0.86 0.86 0.71 0.57 0.86 0.86 0.86 0.71 0.71 0.86 0.56 0.44 0.67 0.40 0.40 

TLc 
0.20 0.00 0.29 0.14 0.29 0.29 0.29 0.00 0.29 0.00 0.29 0.29 0.29 0.29 0.29 0.29 0.11 0.11 0.22 0.30 0.30 

TLs 
0.50 0.57 0.43 0.57 0.57 0.43 0.43 0.57 0.43 0.71 0.43 0.43 0.29 0.57 0.43 0.43 0.44 0.44 0.44 0.50 0.60 

ne
ga

ti
ve

 

BS 
0.10 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.00 0.00 0.00 0.30 0.20 

invF 
0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 

IVI 
0.10 0.00 0.14 0.00 0.00 0.29 0.00 0.14 0.29 0.14 0.00 0.14 0.14 0.43 0.14 0.29 0.22 0.22 0.22 0.10 0.00 

LG 
0.10 0.14 0.14 0.14 0.00 0.14 0.00 0.14 0.14 0.00 0.00 0.14 0.14 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.10 

LS 
0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 
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MTI 
0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.11 0.00 0.11 0.10 0.10 

NDES 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PF 
0.00 0.14 0.00 0.14 0.14 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.14 0.14 0.14 0.00 0.11 0.00 0.00 0.00 0.00 

SS 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TB 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.00 0.00 0.10 

TLc 
0.10 0.00 0.14 0.29 0.14 0.29 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.00 0.22 0.11 0.11 0.00 0.00 

TLs 
0.20 0.29 0.14 0.14 0.14 0.29 0.29 0.14 0.29 0.14 0.29 0.29 0.29 0.14 0.14 0.29 0.33 0.33 0.22 0.20 0.20 



www.manaraa.com

 

 

153

Table B.5. Proportion of positive and negative direct-interactions (top and bottom panels, 

respectively) out of the total number of indicator-attribute relationships investigated to determine 

indicator representativeness for each ecosystem (column; i.e., one indicator:attribute combination 

across all drivers of change). See caption of Table B.3 for definitions of the indicator acronyms. 

Region acronyms are as follows: SE Australia (AustSE), California Current (CalCu), Gulf of 

California (GOC), Gulf of Mexico (GOM), NE US (Neus), and Nordic and Barent’s Sea (NOBA). 

Additional models were included for AustSE and Neus that used dynamic fishing effort (DE) 

instead of constant fishing effort. Proportions greater than 0.5 are highlighted in gray. The sum for 

a given row/column combination across the panels may not always equal one because estimates 

were only considered positive or negative if their confidence interval did not cross zero. 

  region 

sign indicator AustSE AustSEDE CalCu CAM GOC GoMex Guam Neus NeusDE NOBA 

po
si

ti
ve

 

BS 0.00 0.00 0.90 0.00 0.24 0.62 0.06 0.00 0.17 0.17

invF 0.19 0.00 0.05 0.86 0.00 0.57 0.00 0.33 0.17 0.00

IVI 0.86 0.00 0.00 0.05 0.52 0.14 0.67 0.11 0.67 0.00

LG 0.38 0.33 0.00 0.52 0.29 0.57 0.06 0.00 0.00 0.00

LS 0.00 0.67 0.43 0.67 0.29 0.52 0.00 0.00 0.00 0.00

MTI 0.38 0.83 0.86 0.14 0.05 0.00 0.89 0.33 0.17 0.00

NDES 0.29 0.33 0.05 0.33 0.05 0.00 0.17 0.00 0.17 0.00

PF 0.24 0.67 0.14 0.10 0.76 0.67 0.00 0.00 0.00 0.33

SS 0.00 0.00 0.00 0.10 0.00 0.29 0.17 0.00 0.00 0.00

TB 0.90 0.67 0.19 0.10 0.86 0.19 0.22 0.00 0.00 0.00

TLc 0.38 1.00 0.90 0.10 0.43 0.05 0.17 0.33 0.67 0.00

TLs 0.90 0.67 0.00 0.00 0.14 0.05 0.06 0.00 0.00 0.17

ne
ga

ti
ve

 

BS 0.57 0.83 0.00 0.14 0.10 0.14 0.00 0.39 0.17 0.00

invF 0.10 0.17 0.10 0.00 0.38 0.05 0.22 0.11 0.00 0.50

IVI 0.00 0.50 0.62 0.76 0.05 0.19 0.00 0.56 0.17 0.50

LG 0.00 0.00 1.00 0.05 0.57 0.14 0.28 0.89 0.17 0.00

LS 0.14 0.00 0.05 0.00 0.62 0.00 0.11 0.94 0.00 0.83

MTI 0.00 0.00 0.00 0.00 0.14 0.76 0.00 0.00 0.00 0.00

NDES 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.39 0.00 0.00

PF 0.00 0.00 0.00 0.00 0.00 0.10 0.06 0.33 0.00 0.00

SS 0.00 0.00 0.05 0.00 0.48 0.00 0.11 0.00 0.00 0.00

TB 0.10 0.17 0.00 0.00 0.05 0.14 0.00 0.11 0.50 0.33

TLc 0.00 0.00 0.00 0.43 0.00 0.76 0.72 0.06 0.33 0.00

TLs 0.10 0.33 0.71 0.57 0.00 0.81 0.28 0.83 0.33 0.67
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Table B.6. Same as Table B.4, except for direct-interactions. 
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B.4 FIGURES 

 

Figure B.1. Median, sensitive direct-interactions across drivers of change versus the proportion of 

indicator-attribute relationships that were sensitive for a given combination out of all investigated 

combinations within an ecosystem (colors; refer to text for abbreviations). Dashed line at zero 

distinguishes between positive and negative interactions. Attributes are abbreviated as follows: net 

primary productivity (NPP), total biomass (TB), mean TL of the ecosystem (TLeco), TB divided 

by NPP (TB/NPP), and biomass of groups targeted by fisheries (Tar).  
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Figure B.2. Same as Figure B.1, except for the co-interaction across scenario groups (i.e., the base 

case (BC), ocean acidification (OA), marine protected area (MPA), and fishing (F), which are 

depicted using colors). 
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Figure B.3. Same as Figure B.1, except for the direct-interaction across scenario groups (i.e., the 

base case (BC), ocean acidification (OA), marine protected area (MPA), and fishing (F), which 

are depicted using colors). 
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Figure B.4. Interactions for proportion of non-declining species of those with an assessment of 

their status within a region (NDES) for a given attribute (rows). Upper and lower panel are direct- 

and co-interactions, respectively. Whiskers depict 1.5 times the first and third quartiles and colored 

shapes are overlaid such that drivers of change within an ecosystem can be visualized. Red circles 

are the base case, green triangles are fishing scenarios, blue squares are marine protected area 

scenarios, and purple crosses are ocean acidification scenarios. The top row of numbers in each 

panel are the number of relationships that were sensitive and greater than zero and the bottom row 

is the number of relationships that were sensitive and less than zero. Refer to text in Appendix for 
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region abbreviations. Attributes are abbreviated as follows: net primary productivity (NPP), total 

biomass (TB), mean trophic level of the ecosystem (TLeco), TB divided by NPP (TB/NPP), and 

biomass of groups targeted by fisheries (Tar).  
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Figure B.5. Same as Figure B.4 except for sustainable stocks.  
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Figure B.6. Same as Figure B.4 except for biomass stability.  
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Figure B.7. Same as Figure B.4 except for inverse fishing pressure.  
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Figure B.8. Same as Figure B.4 except for intrinsic vulnerability index.  
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Figure B.9. Same as Figure B.4 except for biomass mean maximum length of fish in the surveyed 

community.  
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Figure B.10. Same as Figure B.4 except for mean life span of fish in the surveyed community. 
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Figure B.11. Same as Figure B.4 except for biomass weighted mean trophic index of the catch. 
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Figure B.12. Same as Figure B.4 except for trophic level (TL) of the catch.  
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Figure B.13. Same as Figure B.4 except for trophic level (TL) of the survey.  
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Figure B.14. Same as Figure B.4 except for the proportion of predatory fish in the surveyed 

community.  
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Figure B.15. Same as Figure B.4 except for biomass of the surveyed community.  
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Figure B.16. Direct- and co-interactions versus lag-1 and lag-0 cross correlations (top and bottom 

panels, respectively). Points are colored according to the indicator and the size of the point refers 

to the “self-interaction” of the indicator or attribute, whichever was larger in terms of absolute 

value. Cross correlations are only included if their absolute value was greater than 0.35 because 

smaller values may not be statistically different than zero and all interactions from multivariate 

autoregressive (MAR) models that were not statistically different than zero are included as zero.
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Appendix C. SUPPLEMENTARY FIGURES FOR CHAPTER 3 

C.1 FIGURES 

 
Figure C.1. Centered median absolute error (MAE) for two estimated parameters: range of the 

spatial and spatiotemporal fields for the encounter model (top row) and the linear depth term for 

positive catch rates (bottom row). Results are from simulations that did (right column) and did not 

(left column) include quadratic depth in the operating model. Colors are used to define if depth 

was included in the estimation method (orange does not and blue does).  
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Figure C.2. Geometric anisotropy specifying the distances leading to 10% correlation in two-

dimensional space for encounters (green) and catch-rates (black) as determined using Eigen-values 

of the anisotropy matrix ( ). Estimates are from models fit to empirical data for darkblotched 

rockfish, where the left panel did not include depth and the right panel included quadratic depth. 

Units are in km for east-west (x-axis) and north-south (y-axis) distances. Vertically stretched 

ellipses indicate correlations stretch over larger distances going from north to south compared to 

east to west. 
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Figure C.3. Empirical versus uniform quantiles for fits of the empirical data to a model that did 

not include depth (left) and a model that included quadratic depth (right). Points should fall close 

to the 1:1 line.  

  

 

  



www.manaraa.com

 

 

187

 
Figure C.4. Comparison of estimated relative indices of abundance (mt) in log space for 

darkblotched rockfish from 2003 to 2015. Data were fit to two estimation methods (EMs), one that 

included linear depth (blue) and one that did not include depth (red). Polygons show the 95% 

confidence intervals for each model, which are purple when they overlap. 
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Figure C.5. Effect of depth squared as estimated by each component of the delta-model (encounters 

on x-axis and positive catch rate on y-axis) when the true process was governed by quadratic depth 

using 500 knots. Each point is a replicate of an estimation method fitted to simulated data that was 

governed by depth. The median absolute error (MAE; median|estimated – true|) for each parameter 

is printed near its respective axis. Unbiased results would be located on the red cross-hairs.  
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Figure C.6. Example simulated time series (thick lines). Depth was included in the operating model 

in the bottom row but not in the top row. Fits to the data (thin lines) are provided for two estimation 

methods. The thin, dashed line represents estimates from the estimation method that included 

linear depth and the solid line is from a misspecified estimation model that did not include depth. 

Colors are used to indicate unique replicates, where just two replicates are shown per panel.  
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Appendix D. SUPPLEMENTARY INFORMATION FOR 

CHAPTER 4 

D.1 ESTIMATION METHODS 

Recent literature on whether to transform the response variables that are proportions or use 

the beta distribution suggest the latter (Warton and Hui, 2011; Schmid et al., 2013; Herpigny and 

Gosselin, 2015). The binomial distribution is also an option when working with proportion data 

but requires information on the sample size. The beta distribution is a continuous distribution with 

finite support on [0, 1] and is governed by two shape parameters,  and , ; ,

	 1 , where μ is the mean of , 0 is the precision parameter 

and Γ  is the gamma function. The variance of  is given by 1 1⁄ , which is a scaled 

version of binomial variance, 1 , allowing for more variation than would be expected by a 

binomial model (i.e., “overdispersion”). The beta distribution was chosen for these data as it 

appears to limit the number of assumptions that are violated (Figure D.1).   
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D.3 FIGURES 

 
Figure D.1. Comparisons between sample and theoretical quantiles for a standard normal 
distribution (upper) and a beta distribution with mean of 0.083 and variance of 0.0035 (lower). 
The beta distribution provides a better fit to the data. The histogram displays the frequencies of 
the proportion of the yearly annual catch limit of sablefish assigned to the LE trawl sector landed 
in a port group using trawl gear within the limited entry (LE) groundfish trawl fishery.  
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